ROOT 6.18/05 Reference Guide |
Public Member Functions | |
RuleFit (const TMVA::MethodBase *rfbase) | |
constructor More... | |
RuleFit (void) | |
default constructor More... | |
virtual | ~RuleFit (void) |
destructor More... | |
void | Boost (TMVA::DecisionTree *dt) |
Boost the events. More... | |
void | BuildTree (TMVA::DecisionTree *dt) |
build the decision tree using fNTreeSample events from fTrainingEventsRndm More... | |
void | CalcImportance () |
calculates the importance of each rule More... | |
Double_t | CalcWeightSum (const std::vector< const TMVA::Event * > *events, UInt_t neve=0) |
calculate the sum of weights More... | |
Double_t | EvalEvent (const Event &e) |
evaluate single event More... | |
void | FillCorr (TH2F *h2, const TMVA::Rule *rule, Int_t v1, Int_t v2) |
fill rule correlation between vx and vy, weighted with either the importance or the coefficient More... | |
void | FillCut (TH2F *h2, const TMVA::Rule *rule, Int_t vind) |
Fill cut. More... | |
void | FillLin (TH2F *h2, Int_t vind) |
fill lin More... | |
void | FillVisHistCorr (const Rule *rule, std::vector< TH2F * > &hlist) |
help routine to MakeVisHists() - fills for all correlation plots More... | |
void | FillVisHistCut (const Rule *rule, std::vector< TH2F * > &hlist) |
help routine to MakeVisHists() - fills for all variables More... | |
void | FitCoefficients () |
Fit the coefficients for the rule ensemble. More... | |
void | ForestStatistics () |
summary of statistics of all trees More... | |
Bool_t | GetCorrVars (TString &title, TString &var1, TString &var2) |
get first and second variables from title More... | |
const std::vector< const TMVA::DecisionTree * > & | GetForest () const |
const MethodBase * | GetMethodBase () const |
const MethodRuleFit * | GetMethodRuleFit () const |
Double_t | GetNEveEff () const |
UInt_t | GetNTreeSample () const |
void | GetRndmSampleEvents (std::vector< const TMVA::Event * > &evevec, UInt_t nevents) |
draw a random subsample of the training events without replacement More... | |
const RuleEnsemble & | GetRuleEnsemble () const |
RuleEnsemble * | GetRuleEnsemblePtr () |
const RuleFitParams & | GetRuleFitParams () const |
RuleFitParams * | GetRuleFitParamsPtr () |
const Event * | GetTrainingEvent (UInt_t i) const |
const std::vector< const TMVA::Event * > & | GetTrainingEvents () const |
Double_t | GetTrainingEventWeight (UInt_t i) const |
void | Initialize (const TMVA::MethodBase *rfbase) |
initialize the parameters of the RuleFit method and make rules More... | |
void | InitNEveEff () |
init effective number of events (using event weights) More... | |
void | InitPtrs (const TMVA::MethodBase *rfbase) |
initialize pointers More... | |
void | MakeDebugHists () |
this will create a histograms intended rather for debugging or for the curious user More... | |
void | MakeForest () |
make a forest of decisiontrees More... | |
void | MakeVisHists () |
this will create histograms visualizing the rule ensemble More... | |
void | NormVisHists (std::vector< TH2F * > &hlist) |
normalize rule importance hists More... | |
void | ReshuffleEvents () |
void | RestoreEventWeights () |
save event weights - must be done before making the forest More... | |
void | SaveEventWeights () |
save event weights - must be done before making the forest More... | |
void | SetGDNPathSteps (Int_t n=100) |
void | SetGDPathStep (Double_t s=0.01) |
void | SetGDTau (Double_t t=0.0) |
void | SetImportanceCut (Double_t minimp=0) |
void | SetMethodBase (const MethodBase *rfbase) |
set MethodBase More... | |
void | SetModelFull () |
void | SetModelLinear () |
void | SetModelRules () |
void | SetMsgType (EMsgType t) |
set the current message type to that of mlog for this class and all other subtools More... | |
void | SetRuleMinDist (Double_t d) |
void | SetTrainingEvents (const std::vector< const TMVA::Event * > &el) |
set the training events randomly More... | |
void | SetVisHistsUseImp (Bool_t f) |
void | UseCoefficientsVisHists () |
void | UseImportanceVisHists () |
Private Member Functions | |
RuleFit (const RuleFit &other) | |
void | Copy (const RuleFit &other) |
copy method More... | |
MsgLogger & | Log () const |
Private Attributes | |
std::vector< Double_t > | fEventWeights |
std::vector< const TMVA::DecisionTree * > | fForest |
MsgLogger * | fLogger |
const MethodBase * | fMethodBase |
const MethodRuleFit * | fMethodRuleFit |
Double_t | fNEveEffTrain |
UInt_t | fNTreeSample |
std::default_random_engine | fRNGEngine |
RuleEnsemble | fRuleEnsemble |
RuleFitParams | fRuleFitParams |
std::vector< const TMVA::Event * > | fTrainingEvents |
std::vector< const TMVA::Event * > | fTrainingEventsRndm |
Bool_t | fVisHistsUseImp |
Static Private Attributes | |
static const Int_t | randSEED = 0 |
#include <TMVA/RuleFit.h>
TMVA::RuleFit::RuleFit | ( | const TMVA::MethodBase * | rfbase | ) |
constructor
Definition at line 65 of file RuleFit.cxx.
TMVA::RuleFit::RuleFit | ( | void | ) |
default constructor
Definition at line 76 of file RuleFit.cxx.
|
virtual |
destructor
Definition at line 90 of file RuleFit.cxx.
|
private |
void TMVA::RuleFit::Boost | ( | TMVA::DecisionTree * | dt | ) |
Boost the events.
The algorithm below is the called AdaBoost. See MethodBDT for details. Actually, this is a more or less copy of MethodBDT::AdaBoost().
Definition at line 339 of file RuleFit.cxx.
void TMVA::RuleFit::BuildTree | ( | TMVA::DecisionTree * | dt | ) |
build the decision tree using fNTreeSample events from fTrainingEventsRndm
Definition at line 201 of file RuleFit.cxx.
void TMVA::RuleFit::CalcImportance | ( | ) |
calculates the importance of each rule
Definition at line 418 of file RuleFit.cxx.
Double_t TMVA::RuleFit::CalcWeightSum | ( | const std::vector< const TMVA::Event * > * | events, |
UInt_t | neve = 0 |
||
) |
calculate the sum of weights
Definition at line 176 of file RuleFit.cxx.
copy method
Definition at line 160 of file RuleFit.cxx.
evaluate single event
Definition at line 432 of file RuleFit.cxx.
void TMVA::RuleFit::FillCorr | ( | TH2F * | h2, |
const TMVA::Rule * | rule, | ||
Int_t | v1, | ||
Int_t | v2 | ||
) |
fill rule correlation between vx and vy, weighted with either the importance or the coefficient
Definition at line 608 of file RuleFit.cxx.
void TMVA::RuleFit::FillCut | ( | TH2F * | h2, |
const TMVA::Rule * | rule, | ||
Int_t | vind | ||
) |
Fill cut.
Definition at line 533 of file RuleFit.cxx.
fill lin
Definition at line 584 of file RuleFit.cxx.
help routine to MakeVisHists() - fills for all correlation plots
Definition at line 715 of file RuleFit.cxx.
help routine to MakeVisHists() - fills for all variables
Definition at line 684 of file RuleFit.cxx.
void TMVA::RuleFit::FitCoefficients | ( | ) |
Fit the coefficients for the rule ensemble.
Definition at line 409 of file RuleFit.cxx.
void TMVA::RuleFit::ForestStatistics | ( | ) |
summary of statistics of all trees
Definition at line 386 of file RuleFit.cxx.
get first and second variables from title
Definition at line 754 of file RuleFit.cxx.
|
inline |
|
inline |
|
inline |
void TMVA::RuleFit::GetRndmSampleEvents | ( | std::vector< const TMVA::Event * > & | evevec, |
UInt_t | nevents | ||
) |
draw a random subsample of the training events without replacement
Definition at line 467 of file RuleFit.cxx.
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
void TMVA::RuleFit::Initialize | ( | const TMVA::MethodBase * | rfbase | ) |
initialize the parameters of the RuleFit method and make rules
Definition at line 120 of file RuleFit.cxx.
void TMVA::RuleFit::InitNEveEff | ( | ) |
init effective number of events (using event weights)
Definition at line 98 of file RuleFit.cxx.
void TMVA::RuleFit::InitPtrs | ( | const TMVA::MethodBase * | rfbase | ) |
initialize pointers
Definition at line 110 of file RuleFit.cxx.
void TMVA::RuleFit::MakeDebugHists | ( | ) |
this will create a histograms intended rather for debugging or for the curious user
Definition at line 937 of file RuleFit.cxx.
void TMVA::RuleFit::MakeForest | ( | ) |
make a forest of decisiontrees
Definition at line 222 of file RuleFit.cxx.
void TMVA::RuleFit::MakeVisHists | ( | ) |
this will create histograms visualizing the rule ensemble
Definition at line 777 of file RuleFit.cxx.
normalize rule importance hists
if all weights are positive, the scale will be 1/maxweight if minimum weight < 0, then the scale will be 1/max(maxweight,abs(minweight))
Definition at line 486 of file RuleFit.cxx.
void TMVA::RuleFit::RestoreEventWeights | ( | ) |
save event weights - must be done before making the forest
Definition at line 321 of file RuleFit.cxx.
void TMVA::RuleFit::SaveEventWeights | ( | ) |
save event weights - must be done before making the forest
Definition at line 309 of file RuleFit.cxx.
void TMVA::RuleFit::SetMethodBase | ( | const MethodBase * | rfbase | ) |
set MethodBase
Definition at line 151 of file RuleFit.cxx.
void TMVA::RuleFit::SetMsgType | ( | EMsgType | t | ) |
set the current message type to that of mlog for this class and all other subtools
Definition at line 191 of file RuleFit.cxx.
void TMVA::RuleFit::SetTrainingEvents | ( | const std::vector< const TMVA::Event * > & | el | ) |
set the training events randomly
Definition at line 440 of file RuleFit.cxx.
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |