Logo ROOT   6.18/05
Reference Guide
List of all members | Public Types | Static Public Member Functions | Static Private Attributes | List of all members
TMVA::DNN::TCuda< AFloat > Class Template Reference

template<typename AFloat = Real_t>
class TMVA::DNN::TCuda< AFloat >

The TCuda architecture class.

Low-level interface class for CUDA computing architectures. Contains as public types the declaration of the scalar, matrix and buffer types for this architecture as well as the remaining functions in the low-level interface in the form of static members.

Definition at line 46 of file Cuda.h.

Public Types

using DeviceBuffer_t = TCudaDeviceBuffer< AFloat >
 
using HostBuffer_t = TCudaHostBuffer< AFloat >
 
using Matrix_t = TCudaMatrix< AFloat >
 
using Scalar_t = AFloat
 

Static Public Member Functions

static void ConvLayerForward (std::vector< TCudaMatrix< AFloat > > &output, std::vector< TCudaMatrix< AFloat > > &derivatives, const std::vector< TCudaMatrix< AFloat > > &input, const TCudaMatrix< AFloat > &weights, const TCudaMatrix< AFloat > &biases, const DNN::CNN::TConvParams &params, EActivationFunction activFunc, std::vector< TCudaMatrix< AFloat > > &inputPrime)
 Forward propagation in the Convolutional layer. More...
 
Forward Propagation

Low-level functions required for the forward propagation of activations through the network.

static void MultiplyTranspose (TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &input, const TCudaMatrix< AFloat > &weights)
 Matrix-multiply input with the transpose of \pweights and write the results into output. More...
 
static void AddRowWise (TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &biases)
 Add the vectors biases row-wise to the matrix output. More...
 
Backward Propagation

Low-level functions required for the forward propagation of activations through the network.

static void Backward (TCudaMatrix< AFloat > &activationGradientsBackward, TCudaMatrix< AFloat > &weightGradients, TCudaMatrix< AFloat > &biasGradients, TCudaMatrix< AFloat > &df, const TCudaMatrix< AFloat > &activationGradients, const TCudaMatrix< AFloat > &weights, const TCudaMatrix< AFloat > &activationBackward)
 Perform the complete backward propagation step. More...
 
static Matrix_tRecurrentLayerBackward (TCudaMatrix< AFloat > &state_gradients_backward, TCudaMatrix< AFloat > &input_weight_gradients, TCudaMatrix< AFloat > &state_weight_gradients, TCudaMatrix< AFloat > &bias_gradients, TCudaMatrix< AFloat > &df, const TCudaMatrix< AFloat > &state, const TCudaMatrix< AFloat > &weights_input, const TCudaMatrix< AFloat > &weights_state, const TCudaMatrix< AFloat > &input, TCudaMatrix< AFloat > &input_gradient)
 Backward pass for Recurrent Networks. More...
 
static void ScaleAdd (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B, Scalar_t beta=1.0)
 Adds a the elements in matrix B scaled by c to the elements in the matrix A. More...
 
static void Copy (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 Copy the elements of matrix A into matrix B. More...
 
template<typename AMatrix_t >
static void CopyDiffArch (TCudaMatrix< Scalar_t > &B, const AMatrix_t &A)
 
static void ScaleAdd (std::vector< TCudaMatrix< Scalar_t > > &A, const std::vector< TCudaMatrix< Scalar_t > > &B, Scalar_t beta=1.0)
 Above functions extended to vectors. More...
 
static void Copy (std::vector< TCudaMatrix< Scalar_t > > &A, const std::vector< TCudaMatrix< Scalar_t > > &B)
 
template<typename AMatrix_t >
static void CopyDiffArch (std::vector< TCudaMatrix< Scalar_t > > &A, const std::vector< AMatrix_t > &B)
 
Activation Functions

For each activation function, the low-level interface contains two routines.

One that applies the acitvation function to a matrix and one that evaluate the derivatives of the activation function at the elements of a given matrix and writes the results into the result matrix.

static void Identity (TCudaMatrix< AFloat > &B)
 
static void IdentityDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
static void Relu (TCudaMatrix< AFloat > &B)
 
static void ReluDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
static void Sigmoid (TCudaMatrix< AFloat > &B)
 
static void SigmoidDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
static void Tanh (TCudaMatrix< AFloat > &B)
 
static void TanhDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
static void SymmetricRelu (TCudaMatrix< AFloat > &B)
 
static void SymmetricReluDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
static void SoftSign (TCudaMatrix< AFloat > &B)
 
static void SoftSignDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
static void Gauss (TCudaMatrix< AFloat > &B)
 
static void GaussDerivative (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 
Loss Functions

Loss functions compute a scalar value given the output of the network for a given training input and the expected network prediction Y that quantifies the quality of the prediction.

For each function also a routing that computes the gradients (suffixed by Gradients) must be provided for the starting of the backpropagation algorithm.

static AFloat MeanSquaredError (const TCudaMatrix< AFloat > &Y, const TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &weights)
 
static void MeanSquaredErrorGradients (TCudaMatrix< AFloat > &dY, const TCudaMatrix< AFloat > &Y, const TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &weights)
 
static AFloat CrossEntropy (const TCudaMatrix< AFloat > &Y, const TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &weights)
 Sigmoid transformation is implicitly applied, thus output should hold the linear activations of the last layer in the net. More...
 
static void CrossEntropyGradients (TCudaMatrix< AFloat > &dY, const TCudaMatrix< AFloat > &Y, const TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &weights)
 
static AFloat SoftmaxCrossEntropy (const TCudaMatrix< AFloat > &Y, const TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &weights)
 Softmax transformation is implicitly applied, thus output should hold the linear activations of the last layer in the net. More...
 
static void SoftmaxCrossEntropyGradients (TCudaMatrix< AFloat > &dY, const TCudaMatrix< AFloat > &Y, const TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &weights)
 
Output Functions

Output functions transform the activations output of the output layer in the network to a valid prediction YHat for the desired usage of the network, e.g.

the identity function for regression or the sigmoid transformation for two-class classification.

static void Sigmoid (TCudaMatrix< AFloat > &YHat, const TCudaMatrix< AFloat > &)
 
static void Softmax (TCudaMatrix< AFloat > &YHat, const TCudaMatrix< AFloat > &)
 
Regularization

For each regularization type two functions are required, one named <Type>Regularization that evaluates the corresponding regularization functional for a given weight matrix and the Add<Type>RegularizationGradients, that adds the regularization component in the gradients to the provided matrix.

static AFloat L1Regularization (const TCudaMatrix< AFloat > &W)
 
static void AddL1RegularizationGradients (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &W, AFloat weightDecay)
 
static AFloat L2Regularization (const TCudaMatrix< AFloat > &W)
 
static void AddL2RegularizationGradients (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &W, AFloat weightDecay)
 
Initialization

For each initialization method, one function in the low-level interface is provided.

The naming scheme is

Initialize<Type>

for a given initialization method Type.

static void InitializeGauss (TCudaMatrix< AFloat > &A)
 
static void InitializeUniform (TCudaMatrix< AFloat > &A)
 
static void InitializeIdentity (TCudaMatrix< AFloat > &A)
 
static void InitializeZero (TCudaMatrix< AFloat > &A)
 
static void InitializeGlorotUniform (TCudaMatrix< AFloat > &A)
 
static void InitializeGlorotNormal (TCudaMatrix< AFloat > &A)
 
static TRandomGetRandomGenerator ()
 
static void SetRandomSeed (size_t seed)
 
Dropout
static void Dropout (TCudaMatrix< AFloat > &A, AFloat p)
 Apply dropout with activation probability p to the given matrix A and scale the result by reciprocal of p. More...
 
Forward Propagation in Convolutional Layer
static void PrepareInternals (std::vector< TCudaMatrix< AFloat > > &inputPrime)
 Attaches a cuda stream to each matrix in order to accomodate parallel kernel launches. More...
 
static size_t calculateDimension (size_t imgDim, size_t fltDim, size_t padding, size_t stride)
 Calculate how many neurons "fit" in the output layer, given the input as well as the layer's hyperparameters. More...
 
static void Im2col (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B, size_t imgHeight, size_t imgWidth, size_t fltHeight, size_t fltWidth, size_t strideRows, size_t strideCols, size_t zeroPaddingHeight, size_t zeroPaddingWidth)
 Transform the matrix B in local view format, suitable for convolution, and store it in matrix A. More...
 
static void Im2colIndices (std::vector< int > &, const TCudaMatrix< AFloat > &, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t)
 
static void Im2colFast (TCudaMatrix< AFloat > &, const TCudaMatrix< AFloat > &, const std::vector< int > &)
 
static void RotateWeights (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B, size_t filterDepth, size_t filterHeight, size_t filterWidth, size_t numFilters)
 Rotates the matrix B, which is representing a weights, and stores them in the matrix A. More...
 
static void AddConvBiases (TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &biases)
 Add the biases in the Convolutional Layer. More...
 
Backward Propagation in Convolutional Layer
static void ConvLayerBackward (std::vector< TCudaMatrix< AFloat > > &activationGradientsBackward, TCudaMatrix< AFloat > &weightGradients, TCudaMatrix< AFloat > &biasGradients, std::vector< TCudaMatrix< AFloat > > &df, const std::vector< TCudaMatrix< AFloat > > &activationGradients, const TCudaMatrix< AFloat > &weights, const std::vector< TCudaMatrix< AFloat > > &activationBackward, size_t batchSize, size_t inputHeight, size_t inputWidth, size_t depth, size_t height, size_t width, size_t filterDepth, size_t filterHeight, size_t filterWidth, size_t nLocalViews)
 Perform the complete backward propagation step in a Convolutional Layer. More...
 
static void CalculateConvActivationGradients (std::vector< TCudaMatrix< AFloat > > &activationGradientsBackward, std::vector< TCudaMatrix< AFloat > > &df, const TCudaMatrix< AFloat > &weights, size_t batchSize, size_t inputHeight, size_t inputWidth, size_t depth, size_t height, size_t width, size_t filterDepth, size_t filterHeight, size_t filterWidth)
 Utility function for calculating the activation gradients of the layer before the convolutional layer. More...
 
static void CalculateConvWeightGradients (TCudaMatrix< AFloat > &weightGradients, std::vector< TCudaMatrix< AFloat > > &df, const std::vector< TCudaMatrix< AFloat > > &activations_backward, size_t batchSize, size_t inputHeight, size_t inputWidth, size_t depth, size_t height, size_t width, size_t filterDepth, size_t filterHeight, size_t filterWidth, size_t nLocalViews)
 Utility function for calculating the weight gradients of the convolutional layer. More...
 
static void CalculateConvBiasGradients (TCudaMatrix< AFloat > &biasGradients, std::vector< TCudaMatrix< AFloat > > &df, size_t batchSize, size_t depth, size_t nLocalViews)
 Utility function for calculating the bias gradients of the convolutional layer. More...
 
Forward Propagation in Max Pooling Layer
static void Downsample (TCudaMatrix< AFloat > &A, TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &C, size_t imgHeight, size_t imgWidth, size_t fltHeight, size_t fltWidth, size_t strideRows, size_t strideCols)
 Downsample the matrix C to the matrix A, using max operation, such that the winning indices are stored in matrix B. More...
 
Backward Propagation in Max Pooling Layer
static void MaxPoolLayerBackward (TCudaMatrix< AFloat > &activationGradientsBackward, const TCudaMatrix< AFloat > &activationGradients, const TCudaMatrix< AFloat > &indexMatrix, size_t imgHeight, size_t imgWidth, size_t fltHeight, size_t fltWidth, size_t strideRows, size_t strideCols, size_t nLocalViews)
 Perform the complete backward propagation step in a Pooling Layer. More...
 
Forward and Backward Propagation in Reshape Layer
static void Reshape (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B)
 Transform the matrix B to a matrix with different dimensions A. More...
 
static void Flatten (TCudaMatrix< AFloat > &A, const std::vector< TCudaMatrix< AFloat > > &B, size_t size, size_t nRows, size_t nCols)
 Flattens the tensor B, such that each matrix, is stretched in one row, resulting with a matrix A. More...
 
static void Deflatten (std::vector< TCudaMatrix< AFloat > > &A, const TCudaMatrix< AFloat > &B, size_t index, size_t nRows, size_t nCols)
 Transforms each row of B to a matrix and stores it in the tensor B. More...
 
static void Rearrange (std::vector< TCudaMatrix< AFloat > > &out, const std::vector< TCudaMatrix< AFloat > > &in)
 Rearrage data accoring to time fill B x T x D out with T x B x D matrix in. More...
 
Additional Arithmetic Functions

Additional arithmetic on CUDA matrices used to implement the low-level interface.

static void Multiply (TCudaMatrix< AFloat > &C, const TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B)
 Standard multiplication of two matrices A and B with the result being written into C. More...
 
static void TransposeMultiply (TCudaMatrix< AFloat > &output, const TCudaMatrix< AFloat > &input, const TCudaMatrix< AFloat > &Weights)
 Matrix multiplication of two matrices A and B^T (transposed) with the result being written into C. More...
 
static void Hadamard (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B)
 In-place Hadamard (element-wise) product of matrices A and B with the result being written into A. More...
 
static void SumColumns (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 Sum columns of (m x n) matrix A and write the results into the first m elements in B. More...
 
static void SumRows (TCudaMatrix< AFloat > &B, const TCudaMatrix< AFloat > &A)
 Sum rows of (m x n) matrix A and write the results into the first m elements in B. More...
 
static AFloat Sum (const TCudaMatrix< AFloat > &A)
 Compute the sum of all elements in A. More...
 
static bool AlmostEquals (const TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B, double epsilon=0.1)
 Check two matrices for equality, taking floating point arithmetic errors into account. More...
 
static void ConstAdd (TCudaMatrix< AFloat > &A, AFloat beta)
 Add the constant beta to all the elements of matrix A and write the result into A. More...
 
static void ConstMult (TCudaMatrix< AFloat > &A, AFloat beta)
 Multiply the constant beta to all the elements of matrix A and write the result into A. More...
 
static void ReciprocalElementWise (TCudaMatrix< AFloat > &A)
 Reciprocal each element of the matrix A and write the result into A. More...
 
static void SquareElementWise (TCudaMatrix< AFloat > &A)
 Square each element of the matrix A and write the result into A. More...
 
static void SqrtElementWise (TCudaMatrix< AFloat > &A)
 Square root each element of the matrix A and write the result into A. More...
 
static void AdamUpdate (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &M, const TCudaMatrix< AFloat > &V, AFloat alpha, AFloat eps)
 
static void AdamUpdateFirstMom (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B, AFloat beta)
 
static void AdamUpdateSecondMom (TCudaMatrix< AFloat > &A, const TCudaMatrix< AFloat > &B, AFloat beta)
 

Static Private Attributes

static TRandomfgRandomGen
 

#include <TMVA/DNN/Architectures/Cuda.h>

Member Typedef Documentation

◆ DeviceBuffer_t

template<typename AFloat = Real_t>
using TMVA::DNN::TCuda< AFloat >::DeviceBuffer_t = TCudaDeviceBuffer<AFloat>

Definition at line 54 of file Cuda.h.

◆ HostBuffer_t

template<typename AFloat = Real_t>
using TMVA::DNN::TCuda< AFloat >::HostBuffer_t = TCudaHostBuffer<AFloat>

Definition at line 55 of file Cuda.h.

◆ Matrix_t

template<typename AFloat = Real_t>
using TMVA::DNN::TCuda< AFloat >::Matrix_t = TCudaMatrix<AFloat>

Definition at line 53 of file Cuda.h.

◆ Scalar_t

template<typename AFloat = Real_t>
using TMVA::DNN::TCuda< AFloat >::Scalar_t = AFloat

Definition at line 52 of file Cuda.h.

Member Function Documentation

◆ AdamUpdate()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AdamUpdate ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  M,
const TCudaMatrix< AFloat > &  V,
AFloat  alpha,
AFloat  eps 
)
static

◆ AdamUpdateFirstMom()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AdamUpdateFirstMom ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B,
AFloat  beta 
)
static

◆ AdamUpdateSecondMom()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AdamUpdateSecondMom ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B,
AFloat  beta 
)
static

◆ AddConvBiases()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AddConvBiases ( TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  biases 
)
static

Add the biases in the Convolutional Layer.


◆ AddL1RegularizationGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AddL1RegularizationGradients ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  W,
AFloat  weightDecay 
)
static

◆ AddL2RegularizationGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AddL2RegularizationGradients ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  W,
AFloat  weightDecay 
)
static

◆ AddRowWise()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::AddRowWise ( TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  biases 
)
static

Add the vectors biases row-wise to the matrix output.

◆ AlmostEquals()

template<typename AFloat = Real_t>
static bool TMVA::DNN::TCuda< AFloat >::AlmostEquals ( const TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B,
double  epsilon = 0.1 
)
static

Check two matrices for equality, taking floating point arithmetic errors into account.

◆ Backward()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Backward ( TCudaMatrix< AFloat > &  activationGradientsBackward,
TCudaMatrix< AFloat > &  weightGradients,
TCudaMatrix< AFloat > &  biasGradients,
TCudaMatrix< AFloat > &  df,
const TCudaMatrix< AFloat > &  activationGradients,
const TCudaMatrix< AFloat > &  weights,
const TCudaMatrix< AFloat > &  activationBackward 
)
static

Perform the complete backward propagation step.

If the provided activationGradientsBackward matrix is not empty, compute the gradients of the objective function with respect to the activations of the previous layer (backward direction). Also compute the weight and the bias gradients. Modifies the values in df and thus produces only a valid result, if it is applied the first time after the corresponding forward propagation has been per- formed.

◆ CalculateConvActivationGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::CalculateConvActivationGradients ( std::vector< TCudaMatrix< AFloat > > &  activationGradientsBackward,
std::vector< TCudaMatrix< AFloat > > &  df,
const TCudaMatrix< AFloat > &  weights,
size_t  batchSize,
size_t  inputHeight,
size_t  inputWidth,
size_t  depth,
size_t  height,
size_t  width,
size_t  filterDepth,
size_t  filterHeight,
size_t  filterWidth 
)
static

Utility function for calculating the activation gradients of the layer before the convolutional layer.

◆ CalculateConvBiasGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::CalculateConvBiasGradients ( TCudaMatrix< AFloat > &  biasGradients,
std::vector< TCudaMatrix< AFloat > > &  df,
size_t  batchSize,
size_t  depth,
size_t  nLocalViews 
)
static

Utility function for calculating the bias gradients of the convolutional layer.

◆ CalculateConvWeightGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::CalculateConvWeightGradients ( TCudaMatrix< AFloat > &  weightGradients,
std::vector< TCudaMatrix< AFloat > > &  df,
const std::vector< TCudaMatrix< AFloat > > &  activations_backward,
size_t  batchSize,
size_t  inputHeight,
size_t  inputWidth,
size_t  depth,
size_t  height,
size_t  width,
size_t  filterDepth,
size_t  filterHeight,
size_t  filterWidth,
size_t  nLocalViews 
)
static

Utility function for calculating the weight gradients of the convolutional layer.

◆ calculateDimension()

template<typename AFloat = Real_t>
static size_t TMVA::DNN::TCuda< AFloat >::calculateDimension ( size_t  imgDim,
size_t  fltDim,
size_t  padding,
size_t  stride 
)
static

Calculate how many neurons "fit" in the output layer, given the input as well as the layer's hyperparameters.

◆ ConstAdd()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ConstAdd ( TCudaMatrix< AFloat > &  A,
AFloat  beta 
)
static

Add the constant beta to all the elements of matrix A and write the result into A.

◆ ConstMult()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ConstMult ( TCudaMatrix< AFloat > &  A,
AFloat  beta 
)
static

Multiply the constant beta to all the elements of matrix A and write the result into A.

◆ ConvLayerBackward()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ConvLayerBackward ( std::vector< TCudaMatrix< AFloat > > &  activationGradientsBackward,
TCudaMatrix< AFloat > &  weightGradients,
TCudaMatrix< AFloat > &  biasGradients,
std::vector< TCudaMatrix< AFloat > > &  df,
const std::vector< TCudaMatrix< AFloat > > &  activationGradients,
const TCudaMatrix< AFloat > &  weights,
const std::vector< TCudaMatrix< AFloat > > &  activationBackward,
size_t  batchSize,
size_t  inputHeight,
size_t  inputWidth,
size_t  depth,
size_t  height,
size_t  width,
size_t  filterDepth,
size_t  filterHeight,
size_t  filterWidth,
size_t  nLocalViews 
)
static

Perform the complete backward propagation step in a Convolutional Layer.

If the provided activationGradientsBackward matrix is not empty, compute the gradients of the objective function with respect to the activations of the previous layer (backward direction). Also compute the weight and the bias gradients. Modifies the values in df and thus produces only a valid result, if it is applied the first time after the corresponding forward propagation has been per- formed.

◆ ConvLayerForward()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ConvLayerForward ( std::vector< TCudaMatrix< AFloat > > &  output,
std::vector< TCudaMatrix< AFloat > > &  derivatives,
const std::vector< TCudaMatrix< AFloat > > &  input,
const TCudaMatrix< AFloat > &  weights,
const TCudaMatrix< AFloat > &  biases,
const DNN::CNN::TConvParams params,
EActivationFunction  activFunc,
std::vector< TCudaMatrix< AFloat > > &  inputPrime 
)
static

Forward propagation in the Convolutional layer.

◆ Copy() [1/2]

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Copy ( std::vector< TCudaMatrix< Scalar_t > > &  A,
const std::vector< TCudaMatrix< Scalar_t > > &  B 
)
static

◆ Copy() [2/2]

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Copy ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

Copy the elements of matrix A into matrix B.

◆ CopyDiffArch() [1/2]

template<typename AFloat >
template<typename AMatrix_t >
void TMVA::DNN::TCuda< AFloat >::CopyDiffArch ( std::vector< TCudaMatrix< Scalar_t > > &  A,
const std::vector< AMatrix_t > &  B 
)
static

Definition at line 551 of file Cuda.h.

◆ CopyDiffArch() [2/2]

template<typename AFloat >
template<typename AMatrix_t >
void TMVA::DNN::TCuda< AFloat >::CopyDiffArch ( TCudaMatrix< Scalar_t > &  B,
const AMatrix_t &  A 
)
static

Definition at line 539 of file Cuda.h.

◆ CrossEntropy()

template<typename AFloat = Real_t>
static AFloat TMVA::DNN::TCuda< AFloat >::CrossEntropy ( const TCudaMatrix< AFloat > &  Y,
const TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  weights 
)
static

Sigmoid transformation is implicitly applied, thus output should hold the linear activations of the last layer in the net.

◆ CrossEntropyGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::CrossEntropyGradients ( TCudaMatrix< AFloat > &  dY,
const TCudaMatrix< AFloat > &  Y,
const TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  weights 
)
static

◆ Deflatten()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Deflatten ( std::vector< TCudaMatrix< AFloat > > &  A,
const TCudaMatrix< AFloat > &  B,
size_t  index,
size_t  nRows,
size_t  nCols 
)
static

Transforms each row of B to a matrix and stores it in the tensor B.

◆ Downsample()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Downsample ( TCudaMatrix< AFloat > &  A,
TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  C,
size_t  imgHeight,
size_t  imgWidth,
size_t  fltHeight,
size_t  fltWidth,
size_t  strideRows,
size_t  strideCols 
)
static

Downsample the matrix C to the matrix A, using max operation, such that the winning indices are stored in matrix B.

◆ Dropout()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Dropout ( TCudaMatrix< AFloat > &  A,
AFloat  p 
)
static

Apply dropout with activation probability p to the given matrix A and scale the result by reciprocal of p.

◆ Flatten()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Flatten ( TCudaMatrix< AFloat > &  A,
const std::vector< TCudaMatrix< AFloat > > &  B,
size_t  size,
size_t  nRows,
size_t  nCols 
)
static

Flattens the tensor B, such that each matrix, is stretched in one row, resulting with a matrix A.

◆ Gauss()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Gauss ( TCudaMatrix< AFloat > &  B)
static

◆ GaussDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::GaussDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ GetRandomGenerator()

template<typename AFloat = Real_t>
static TRandom & TMVA::DNN::TCuda< AFloat >::GetRandomGenerator ( )
static

◆ Hadamard()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Hadamard ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B 
)
static

In-place Hadamard (element-wise) product of matrices A and B with the result being written into A.

◆ Identity()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Identity ( TCudaMatrix< AFloat > &  B)
static

◆ IdentityDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::IdentityDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ Im2col()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Im2col ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B,
size_t  imgHeight,
size_t  imgWidth,
size_t  fltHeight,
size_t  fltWidth,
size_t  strideRows,
size_t  strideCols,
size_t  zeroPaddingHeight,
size_t  zeroPaddingWidth 
)
static

Transform the matrix B in local view format, suitable for convolution, and store it in matrix A.

◆ Im2colFast()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Im2colFast ( TCudaMatrix< AFloat > &  ,
const TCudaMatrix< AFloat > &  ,
const std::vector< int > &   
)
inlinestatic

Definition at line 333 of file Cuda.h.

◆ Im2colIndices()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Im2colIndices ( std::vector< int > &  ,
const TCudaMatrix< AFloat > &  ,
size_t  ,
size_t  ,
size_t  ,
size_t  ,
size_t  ,
size_t  ,
size_t  ,
size_t  ,
size_t   
)
inlinestatic

Definition at line 329 of file Cuda.h.

◆ InitializeGauss()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::InitializeGauss ( TCudaMatrix< AFloat > &  A)
static

◆ InitializeGlorotNormal()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::InitializeGlorotNormal ( TCudaMatrix< AFloat > &  A)
static

◆ InitializeGlorotUniform()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::InitializeGlorotUniform ( TCudaMatrix< AFloat > &  A)
static

◆ InitializeIdentity()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::InitializeIdentity ( TCudaMatrix< AFloat > &  A)
static

◆ InitializeUniform()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::InitializeUniform ( TCudaMatrix< AFloat > &  A)
static

◆ InitializeZero()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::InitializeZero ( TCudaMatrix< AFloat > &  A)
static

◆ L1Regularization()

template<typename AFloat = Real_t>
static AFloat TMVA::DNN::TCuda< AFloat >::L1Regularization ( const TCudaMatrix< AFloat > &  W)
static

◆ L2Regularization()

template<typename AFloat = Real_t>
static AFloat TMVA::DNN::TCuda< AFloat >::L2Regularization ( const TCudaMatrix< AFloat > &  W)
static

◆ MaxPoolLayerBackward()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::MaxPoolLayerBackward ( TCudaMatrix< AFloat > &  activationGradientsBackward,
const TCudaMatrix< AFloat > &  activationGradients,
const TCudaMatrix< AFloat > &  indexMatrix,
size_t  imgHeight,
size_t  imgWidth,
size_t  fltHeight,
size_t  fltWidth,
size_t  strideRows,
size_t  strideCols,
size_t  nLocalViews 
)
static

Perform the complete backward propagation step in a Pooling Layer.

Based on the winning idices stored in the index matrix, it just forwards the actiovation gradients to the previous layer.

◆ MeanSquaredError()

template<typename AFloat = Real_t>
static AFloat TMVA::DNN::TCuda< AFloat >::MeanSquaredError ( const TCudaMatrix< AFloat > &  Y,
const TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  weights 
)
static

◆ MeanSquaredErrorGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::MeanSquaredErrorGradients ( TCudaMatrix< AFloat > &  dY,
const TCudaMatrix< AFloat > &  Y,
const TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  weights 
)
static

◆ Multiply()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Multiply ( TCudaMatrix< AFloat > &  C,
const TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B 
)
static

Standard multiplication of two matrices A and B with the result being written into C.

◆ MultiplyTranspose()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::MultiplyTranspose ( TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  input,
const TCudaMatrix< AFloat > &  weights 
)
static

Matrix-multiply input with the transpose of \pweights and write the results into output.

◆ PrepareInternals()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::PrepareInternals ( std::vector< TCudaMatrix< AFloat > > &  inputPrime)
static

Attaches a cuda stream to each matrix in order to accomodate parallel kernel launches.

◆ Rearrange()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Rearrange ( std::vector< TCudaMatrix< AFloat > > &  out,
const std::vector< TCudaMatrix< AFloat > > &  in 
)
static

Rearrage data accoring to time fill B x T x D out with T x B x D matrix in.

◆ ReciprocalElementWise()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ReciprocalElementWise ( TCudaMatrix< AFloat > &  A)
static

Reciprocal each element of the matrix A and write the result into A.

◆ RecurrentLayerBackward()

template<typename AFloat = Real_t>
static Matrix_t & TMVA::DNN::TCuda< AFloat >::RecurrentLayerBackward ( TCudaMatrix< AFloat > &  state_gradients_backward,
TCudaMatrix< AFloat > &  input_weight_gradients,
TCudaMatrix< AFloat > &  state_weight_gradients,
TCudaMatrix< AFloat > &  bias_gradients,
TCudaMatrix< AFloat > &  df,
const TCudaMatrix< AFloat > &  state,
const TCudaMatrix< AFloat > &  weights_input,
const TCudaMatrix< AFloat > &  weights_state,
const TCudaMatrix< AFloat > &  input,
TCudaMatrix< AFloat > &  input_gradient 
)
static

Backward pass for Recurrent Networks.

◆ Relu()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Relu ( TCudaMatrix< AFloat > &  B)
static

◆ ReluDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ReluDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ Reshape()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Reshape ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B 
)
static

Transform the matrix B to a matrix with different dimensions A.

◆ RotateWeights()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::RotateWeights ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B,
size_t  filterDepth,
size_t  filterHeight,
size_t  filterWidth,
size_t  numFilters 
)
static

Rotates the matrix B, which is representing a weights, and stores them in the matrix A.

◆ ScaleAdd() [1/2]

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ScaleAdd ( std::vector< TCudaMatrix< Scalar_t > > &  A,
const std::vector< TCudaMatrix< Scalar_t > > &  B,
Scalar_t  beta = 1.0 
)
static

Above functions extended to vectors.

◆ ScaleAdd() [2/2]

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::ScaleAdd ( TCudaMatrix< AFloat > &  A,
const TCudaMatrix< AFloat > &  B,
Scalar_t  beta = 1.0 
)
static

Adds a the elements in matrix B scaled by c to the elements in the matrix A.

This is required for the weight update in the gradient descent step.

◆ SetRandomSeed()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SetRandomSeed ( size_t  seed)
static

◆ Sigmoid() [1/2]

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Sigmoid ( TCudaMatrix< AFloat > &  B)
static

◆ Sigmoid() [2/2]

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Sigmoid ( TCudaMatrix< AFloat > &  YHat,
const TCudaMatrix< AFloat > &   
)
static

◆ SigmoidDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SigmoidDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ Softmax()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Softmax ( TCudaMatrix< AFloat > &  YHat,
const TCudaMatrix< AFloat > &   
)
static

◆ SoftmaxCrossEntropy()

template<typename AFloat = Real_t>
static AFloat TMVA::DNN::TCuda< AFloat >::SoftmaxCrossEntropy ( const TCudaMatrix< AFloat > &  Y,
const TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  weights 
)
static

Softmax transformation is implicitly applied, thus output should hold the linear activations of the last layer in the net.

◆ SoftmaxCrossEntropyGradients()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SoftmaxCrossEntropyGradients ( TCudaMatrix< AFloat > &  dY,
const TCudaMatrix< AFloat > &  Y,
const TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  weights 
)
static

◆ SoftSign()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SoftSign ( TCudaMatrix< AFloat > &  B)
static

◆ SoftSignDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SoftSignDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ SqrtElementWise()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SqrtElementWise ( TCudaMatrix< AFloat > &  A)
static

Square root each element of the matrix A and write the result into A.

◆ SquareElementWise()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SquareElementWise ( TCudaMatrix< AFloat > &  A)
static

Square each element of the matrix A and write the result into A.

◆ Sum()

template<typename AFloat = Real_t>
static AFloat TMVA::DNN::TCuda< AFloat >::Sum ( const TCudaMatrix< AFloat > &  A)
static

Compute the sum of all elements in A.

◆ SumColumns()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SumColumns ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

Sum columns of (m x n) matrix A and write the results into the first m elements in B.

◆ SumRows()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SumRows ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

Sum rows of (m x n) matrix A and write the results into the first m elements in B.

◆ SymmetricRelu()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SymmetricRelu ( TCudaMatrix< AFloat > &  B)
static

◆ SymmetricReluDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::SymmetricReluDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ Tanh()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::Tanh ( TCudaMatrix< AFloat > &  B)
static

◆ TanhDerivative()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::TanhDerivative ( TCudaMatrix< AFloat > &  B,
const TCudaMatrix< AFloat > &  A 
)
static

◆ TransposeMultiply()

template<typename AFloat = Real_t>
static void TMVA::DNN::TCuda< AFloat >::TransposeMultiply ( TCudaMatrix< AFloat > &  output,
const TCudaMatrix< AFloat > &  input,
const TCudaMatrix< AFloat > &  Weights 
)
static

Matrix multiplication of two matrices A and B^T (transposed) with the result being written into C.

Member Data Documentation

◆ fgRandomGen

template<typename AFloat = Real_t>
TRandom* TMVA::DNN::TCuda< AFloat >::fgRandomGen
staticprivate

Definition at line 49 of file Cuda.h.


The documentation for this class was generated from the following file: