61 const Int_t nRows =
a.GetNrows();
62 const Int_t nCols =
a.GetNcols();
63 const Int_t rowLwb =
a.GetRowLwb();
64 const Int_t colLwb =
a.GetColLwb();
66 if (nRows != nCols || rowLwb != colLwb)
68 Error(
"TMatrixDEigen(TMatrixD &)",
"matrix should be square");
72 const Int_t rowUpb = rowLwb+nRows-1;
80 else ortho.
Use(nRows,work);
121 for (
m = low+1;
m <= high-1;
m++) {
127 for (i =
m; i <= high; i++) {
136 for (i = high; i >=
m; i--) {
138 pO[i] = pH[off_i+
m-1]/scale;
150 for (j =
m; j <
n; j++) {
152 for (i = high; i >=
m; i--) {
154 f += pO[i]*pH[off_i+j];
157 for (i =
m; i <= high; i++) {
159 pH[off_i+j] -=
f*pO[i];
163 for (i = 0; i <= high; i++) {
166 for (j = high; j >=
m; j--)
167 f += pO[j]*pH[off_i+j];
169 for (j =
m; j <= high; j++)
170 pH[off_i+j] -=
f*pO[j];
173 pH[off_m+
m-1] = scale*
g;
179 for (i = 0; i <
n; i++) {
181 for (j = 0; j <
n; j++)
182 pV[off_i+j] = (i == j ? 1.0 : 0.0);
185 for (
m = high-1;
m >= low+1;
m--) {
187 if (pH[off_m+
m-1] != 0.0) {
188 for (i =
m+1; i <= high; i++) {
190 pO[i] = pH[off_i+
m-1];
192 for (j =
m; j <= high; j++) {
194 for (i =
m; i <= high; i++) {
196 g += pO[i]*pV[off_i+j];
199 g = (
g/pO[
m])/pH[off_m+
m-1];
200 for (i =
m; i <= high; i++) {
202 pV[off_i+j] +=
g*pO[i];
238 const Int_t nn =
v.GetNrows();
241 const Int_t high = nn-1;
255 for (i = 0; i < nn; i++) {
256 const Int_t off_i = i*nn;
257 if ((i < low) || (i > high)) {
270 const Int_t off_n1 = (
n-1)*nn;
276 const Int_t off_l1 = (
l-1)*nn;
290 pH[off_n+
n] = pH[off_n+
n]+exshift;
298 }
else if (
l ==
n-1) {
299 w = pH[off_n+
n-1]*pH[off_n1+
n];
300 p = (pH[off_n1+
n-1]-pH[off_n+
n])/2.0;
303 pH[off_n+
n] = pH[off_n+
n]+exshift;
304 pH[off_n1+
n-1] = pH[off_n1+
n-1]+exshift;
330 for (j =
n-1; j < nn; j++) {
332 pH[off_n1+j] =
q*z+p*pH[off_n+j];
333 pH[off_n+j] =
q*pH[off_n+j]-p*z;
338 for (i = 0; i <=
n; i++) {
339 const Int_t off_i = i*nn;
341 pH[off_i+
n-1] =
q*z+p*pH[off_i+
n];
342 pH[off_i+
n] =
q*pH[off_i+
n]-p*z;
347 for (i = low; i <= high; i++) {
348 const Int_t off_i = i*nn;
350 pV[off_i+
n-1] =
q*z+p*pV[off_i+
n];
351 pV[off_i+
n] =
q*pV[off_i+
n]-p*z;
376 w = pH[off_n+
n-1]*pH[off_n1+
n];
383 for (i = low; i <=
n; i++) {
384 const Int_t off_i = i*nn;
401 s =
x-w/((
y-
x)/2.0+
s);
402 for (i = low; i <=
n; i++) {
403 const Int_t off_i = i*nn;
412 Error(
"MakeSchurr",
"too many iterations");
421 const Int_t off_m_1 = (
m-1)*nn;
422 const Int_t off_m1 = (
m+1)*nn;
423 const Int_t off_m2 = (
m+2)*nn;
427 p = (
r*
s-w)/pH[off_m1+
m]+pH[off_m+
m+1];
428 q = pH[off_m1+
m+1]-z-
r-
s;
443 for (i =
m+2; i <=
n; i++) {
444 const Int_t off_i = i*nn;
452 for (k =
m; k <=
n-1; k++) {
453 const Int_t off_k = k*nn;
454 const Int_t off_k1 = (k+1)*nn;
455 const Int_t off_k2 = (k+2)*nn;
456 const Int_t notlast = (k !=
n-1);
460 r = (notlast ? pH[off_k2+k-1] : 0.0);
476 pH[off_k+k-1] = -
s*
x;
478 pH[off_k+k-1] = -pH[off_k+k-1];
488 for (j = k; j < nn; j++) {
489 p = pH[off_k+j]+
q*pH[off_k1+j];
491 p = p+
r*pH[off_k2+j];
492 pH[off_k2+j] = pH[off_k2+j]-p*z;
494 pH[off_k+j] = pH[off_k+j]-p*
x;
495 pH[off_k1+j] = pH[off_k1+j]-p*
y;
501 const Int_t off_i = i*nn;
502 p =
x*pH[off_i+k]+
y*pH[off_i+k+1];
504 p = p+z*pH[off_i+k+2];
505 pH[off_i+k+2] = pH[off_i+k+2]-p*
r;
507 pH[off_i+k] = pH[off_i+k]-p;
508 pH[off_i+k+1] = pH[off_i+k+1]-p*
q;
513 for (i = low; i <= high; i++) {
514 const Int_t off_i = i*nn;
515 p =
x*pV[off_i+k]+
y*pV[off_i+k+1];
517 p = p+z*pV[off_i+k+2];
518 pV[off_i+k+2] = pV[off_i+k+2]-p*
r;
520 pV[off_i+k] = pV[off_i+k]-p;
521 pV[off_i+k+1] = pV[off_i+k+1]-p*
q;
533 for (
n = nn-1;
n >= 0;
n--) {
543 for (i =
n-1; i >= 0; i--) {
544 const Int_t off_i = i*nn;
545 const Int_t off_i1 = (i+1)*nn;
548 for (j =
l; j <=
n; j++) {
549 const Int_t off_j = j*nn;
550 r =
r+pH[off_i+j]*pH[off_j+
n];
561 pH[off_i+
n] = -
r/(eps*norm);
568 q = (pD[i]-p)*(pD[i]-p)+pE[i]*pE[i];
572 pH[i+1+
n] = (-
r-w*t)/
x;
574 pH[i+1+
n] = (-
s-
y*t)/z;
581 for (j = i; j <=
n; j++) {
582 const Int_t off_j = j*nn;
583 pH[off_j+
n] = pH[off_j+
n]/t;
593 const Int_t off_n1 = (
n-1)*nn;
598 pH[off_n1+
n-1] =
q/pH[off_n+
n-1];
599 pH[off_n1+
n] = -(pH[off_n+
n]-p)/pH[off_n+
n-1];
601 cdiv(0.0,-pH[off_n1+
n],pH[off_n1+
n-1]-p,
q);
607 for (i =
n-2; i >= 0; i--) {
608 const Int_t off_i = i*nn;
609 const Int_t off_i1 = (i+1)*nn;
612 for (j =
l; j <=
n; j++) {
613 const Int_t off_j = j*nn;
614 ra += pH[off_i+j]*pH[off_j+
n-1];
615 sa += pH[off_i+j]*pH[off_j+
n];
635 Double_t vr = (pD[i]-p)*(pD[i]-p)+pE[i]*pE[i]-
q*
q;
637 if ((vr == 0.0) && (vi == 0.0)) {
645 pH[off_i1+
n-1] = (-ra-w*pH[off_i+
n-1]+
q*pH[off_i+
n])/
x;
646 pH[off_i1+
n] = (-sa-w*pH[off_i+
n]-
q*pH[off_i+
n-1])/
x;
658 for (j = i; j <=
n; j++) {
659 const Int_t off_j = j*nn;
660 pH[off_j+
n-1] = pH[off_j+
n-1]/t;
661 pH[off_j+
n] = pH[off_j+
n]/t;
671 for (i = 0; i < nn; i++) {
672 if (i < low || i > high) {
673 const Int_t off_i = i*nn;
674 for (j = i; j < nn; j++)
675 pV[off_i+j] = pH[off_i+j];
681 for (j = nn-1; j >= low; j--) {
682 for (i = low; i <= high; i++) {
683 const Int_t off_i = i*nn;
686 const Int_t off_k = k*nn;
687 z = z+pV[off_i+k]*pH[off_k+j];
708 for (
Int_t i = 0; i <
n-1; i++) {
710 Double_t norm = pD[i]*pD[i]+pE[i]*pE[i];
712 for (j = i+1; j <
n; j++) {
713 const Double_t norm_new = pD[j]*pD[j]+pE[j]*pE[j];
714 if (norm_new > norm) {
727 for (j = 0; j <
n; j++) {
730 pV[off_j+i] = pV[off_j+k];
742 if (
this != &source) {
793 const Int_t rowUpb = rowLwb+nrows-1;
795 TMatrixD mD(rowLwb,rowUpb,rowLwb,rowUpb);
801 for (
Int_t i = 0; i < nrows; i++) {
802 const Int_t off_i = i*nrows;
803 for (
Int_t j = 0; j < nrows; j++)
807 pD[off_i+i+1] = pe[i];
808 }
else if (pe[i] < 0) {
809 pD[off_i+i-1] = pe[i];
void Error(const char *location, const char *msgfmt,...)
static void cdiv(Double_t xr, Double_t xi, Double_t yr, Double_t yi)
static Double_t gCdivr
Complex scalar division.
static void MakeHessenBerg(TMatrixD &v, TVectorD &ortho, TMatrixD &H)
Nonsymmetric reduction to Hessenberg form.
const TMatrixD GetEigenValues() const
Computes the block diagonal eigenvalue matrix.
TMatrixDEigen & operator=(const TMatrixDEigen &source)
Assignment operator.
static void Sort(TMatrixD &v, TVectorD &d, TVectorD &e)
Sort eigenvalues and corresponding vectors in descending order of Re^2+Im^2 of the complex eigenvalue...
static void MakeSchurr(TMatrixD &v, TVectorD &d, TVectorD &e, TMatrixD &H)
Nonsymmetric reduction from Hessenberg to real Schur form.
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual const Element * GetMatrixArray() const
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
TVectorT< Element > & Use(Int_t lwb, Int_t upb, Element *data)
Use the array data to fill the vector lwb..upb].
Element * GetMatrixArray()
static constexpr double s
Short_t Max(Short_t a, Short_t b)
Double_t Sqrt(Double_t x)
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Short_t Min(Short_t a, Short_t b)