Logo ROOT   6.18/05
Reference Guide
TGeoParaboloid.cxx
Go to the documentation of this file.
1// @(#)root/geom:$Id$
2// Author: Mihaela Gheata 20/06/04
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/** \class TGeoParaboloid
13\ingroup Geometry_classes
14
15Paraboloid class.
16
17A paraboloid is the solid bounded by the following surfaces:
18 - 2 planes parallel with XY cutting the Z axis at Z=-dz and Z=+dz
19 - the surface of revolution of a parabola described by:
20 `z = a*(x*x + y*y) + b`
21
22The parameters a and b are automatically computed from:
23 - rlo - the radius of the circle of intersection between the
24 parabolic surface and the plane z = -dz
25 - rhi - the radius of the circle of intersection between the
26 parabolic surface and the plane z = +dz
27
28 | -dz = a*rlo*rlo + b
29 | dz = a*rhi*rhi + b where: rlo != rhi, both >= 0
30*/
31
32#include "Riostream.h"
33#include "TGeoManager.h"
34#include "TGeoVolume.h"
35#include "TVirtualGeoPainter.h"
36#include "TGeoParaboloid.h"
37#include "TVirtualPad.h"
38#include "TBuffer3D.h"
39#include "TBuffer3DTypes.h"
40#include "TMath.h"
41
43
44////////////////////////////////////////////////////////////////////////////////
45/// Dummy constructor
46
48{
49 fRlo = 0;
50 fRhi = 0;
51 fDz = 0;
52 fA = 0;
53 fB = 0;
55}
56
57////////////////////////////////////////////////////////////////////////////////
58/// Default constructor specifying X and Y semiaxis length
59
61 :TGeoBBox(0,0,0)
62{
63 fRlo = 0;
64 fRhi = 0;
65 fDz = 0;
66 fA = 0;
67 fB = 0;
69 SetParaboloidDimensions(rlo, rhi, dz);
71}
72
73////////////////////////////////////////////////////////////////////////////////
74/// Default constructor specifying X and Y semiaxis length
75
77 :TGeoBBox(name, 0, 0, 0)
78{
79 fRlo = 0;
80 fRhi = 0;
81 fDz = 0;
82 fA = 0;
83 fB = 0;
85 SetParaboloidDimensions(rlo, rhi, dz);
87}
88
89////////////////////////////////////////////////////////////////////////////////
90/// Default constructor specifying minimum and maximum radius
91/// - param[0] = rlo
92/// - param[1] = rhi
93/// - param[2] = dz
94
96{
98 SetDimensions(param);
100}
101
102////////////////////////////////////////////////////////////////////////////////
103/// destructor
104
106{
107}
108
109////////////////////////////////////////////////////////////////////////////////
110/// Computes capacity of the shape in [length^3]
111
113{
114 Double_t capacity = TMath::Pi()*fDz*(fRlo*fRlo+fRhi*fRhi);
115 return capacity;
116}
117
118////////////////////////////////////////////////////////////////////////////////
119/// compute bounding box of the tube
120
122{
124 fDY = fDX;
125 fDZ = fDz;
126}
127
128////////////////////////////////////////////////////////////////////////////////
129/// Compute normal to closest surface from POINT.
130
131void TGeoParaboloid::ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
132{
133 norm[0] = norm[1] = 0.0;
134 if (TMath::Abs(point[2]) > fDz) {
135 norm[2] = TMath::Sign(1., dir[2]);
136 return;
137 }
138 Double_t safz = fDz-TMath::Abs(point[2]);
139 Double_t r = TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
140 Double_t safr = TMath::Abs(r-TMath::Sqrt((point[2]-fB)/fA));
141 if (safz<safr) {
142 norm[2] = TMath::Sign(1., dir[2]);
143 return;
144 }
145 Double_t talf = -2.*fA*r;
146 Double_t calf = 1./TMath::Sqrt(1.+talf*talf);
147 Double_t salf = talf * calf;
148 Double_t phi = TMath::ATan2(point[1], point[0]);
149
150 norm[0] = salf*TMath::Cos(phi);
151 norm[1] = salf*TMath::Sin(phi);
152 norm[2] = calf;
153 Double_t ndotd = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
154 if (ndotd < 0) {
155 norm[0] = -norm[0];
156 norm[1] = -norm[1];
157 norm[2] = -norm[2];
158 }
159}
160
161////////////////////////////////////////////////////////////////////////////////
162/// test if point is inside the elliptical tube
163
165{
166 if (TMath::Abs(point[2])>fDz) return kFALSE;
167 Double_t aa = fA*(point[2]-fB);
168 if (aa < 0) return kFALSE;
169 Double_t rsq = point[0]*point[0]+point[1]*point[1];
170 if (aa < fA*fA*rsq) return kFALSE;
171 return kTRUE;
172}
173
174////////////////////////////////////////////////////////////////////////////////
175/// compute closest distance from point px,py to each vertex
176
178{
180 const Int_t numPoints=n*(n+1)+2;
181 return ShapeDistancetoPrimitive(numPoints, px, py);
182}
183
184////////////////////////////////////////////////////////////////////////////////
185/// Compute distance from a point to the parabola given by:
186/// `z = a*rsq + b; rsq = x*x+y*y`
187
189{
190 Double_t rsq = point[0]*point[0]+point[1]*point[1];
191 Double_t a = fA * (dir[0]*dir[0] + dir[1]*dir[1]);
192 Double_t b = 2.*fA*(point[0]*dir[0]+point[1]*dir[1])-dir[2];
193 Double_t c = fA*rsq + fB - point[2];
196 if (TMath::Abs(b)<TGeoShape::Tolerance()) return dist; // big
197 dist = -c/b;
198 if (dist < 0) return TGeoShape::Big();
199 return dist; // OK
200 }
201 Double_t ainv = 1./a;
202 Double_t sum = - b*ainv;
203 Double_t prod = c*ainv;
204 Double_t delta = sum*sum - 4.*prod;
205 if (delta<0) return dist; // big
206 delta = TMath::Sqrt(delta);
207 Double_t sone = TMath::Sign(1.,ainv);
208 Int_t i = -1;
209 while (i<2) {
210 dist = 0.5*(sum+i*sone*delta);
211 i += 2;
212 if (dist<0) continue;
213 if (dist<1.E-8) {
214 Double_t talf = -2.*fA*TMath::Sqrt(rsq);
215 Double_t phi = TMath::ATan2(point[1], point[0]);
216 Double_t ndotd = talf*(TMath::Cos(phi)*dir[0]+TMath::Sin(phi)*dir[1])+dir[2];
217 if (!in) ndotd *= -1;
218 if (ndotd<0) return dist;
219 } else return dist;
220 }
221 return TGeoShape::Big();
222}
223
224////////////////////////////////////////////////////////////////////////////////
225/// compute distance from inside point to surface of the paraboloid
226
227Double_t TGeoParaboloid::DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
228{
229 if (iact<3 && safe) {
230 // compute safe distance
231 *safe = Safety(point, kTRUE);
232 if (iact==0) return TGeoShape::Big();
233 if (iact==1 && step<*safe) return TGeoShape::Big();
234 }
235
237 if (dir[2]<0) {
238 dz = -(point[2]+fDz)/dir[2];
239 } else if (dir[2]>0) {
240 dz = (fDz-point[2])/dir[2];
241 }
242 Double_t dpara = DistToParaboloid(point, dir, kTRUE);
243 return TMath::Min(dz, dpara);
244}
245
246////////////////////////////////////////////////////////////////////////////////
247/// compute distance from outside point to surface of the paraboloid and safe distance
248
249Double_t TGeoParaboloid::DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
250{
251 Double_t snxt = TGeoShape::Big();
252 if (iact<3 && safe) {
253 // compute safe distance
254 *safe = Safety(point, kFALSE);
255 if (iact==0) return TGeoShape::Big();
256 if (iact==1 && step<*safe) return TGeoShape::Big();
257 }
258 Double_t xnew, ynew, znew;
259 if (point[2]<=-fDz) {
260 if (dir[2]<=0) return TGeoShape::Big();
261 snxt = -(fDz+point[2])/dir[2];
262 // find extrapolated X and Y
263 xnew = point[0]+snxt*dir[0];
264 ynew = point[1]+snxt*dir[1];
265 if ((xnew*xnew+ynew*ynew) <= fRlo*fRlo) return snxt;
266 } else if (point[2]>=fDz) {
267 if (dir[2]>=0) return TGeoShape::Big();
268 snxt = (fDz-point[2])/dir[2];
269 // find extrapolated X and Y
270 xnew = point[0]+snxt*dir[0];
271 ynew = point[1]+snxt*dir[1];
272 if ((xnew*xnew+ynew*ynew) <= fRhi*fRhi) return snxt;
273 }
274 snxt = DistToParaboloid(point, dir, kFALSE);
275 if (snxt > 1E20) return snxt;
276 znew = point[2]+snxt*dir[2];
277 if (TMath::Abs(znew) <= fDz) return snxt;
278 return TGeoShape::Big();
279}
280
281////////////////////////////////////////////////////////////////////////////////
282/// Divide the paraboloid along one axis.
283
284TGeoVolume *TGeoParaboloid::Divide(TGeoVolume * /*voldiv*/, const char * /*divname*/, Int_t /*iaxis*/, Int_t /*ndiv*/,
285 Double_t /*start*/, Double_t /*step*/)
286{
287 Error("Divide", "Paraboloid divisions not implemented");
288 return 0;
289}
290
291////////////////////////////////////////////////////////////////////////////////
292/// Fill vector param[4] with the bounding cylinder parameters. The order
293/// is the following : Rmin, Rmax, Phi1, Phi2
294
296{
297 param[0] = 0.; // Rmin
298 param[1] = fDX; // Rmax
299 param[1] *= param[1];
300 param[2] = 0.; // Phi1
301 param[3] = 360.; // Phi2
302}
303
304////////////////////////////////////////////////////////////////////////////////
305/// in case shape has some negative parameters, these has to be computed
306/// in order to fit the mother
307
309{
310 return 0;
311}
312
313////////////////////////////////////////////////////////////////////////////////
314/// print shape parameters
315
317{
318 printf("*** Shape %s: TGeoParaboloid ***\n", GetName());
319 printf(" rlo = %11.5f\n", fRlo);
320 printf(" rhi = %11.5f\n", fRhi);
321 printf(" dz = %11.5f\n", fDz);
322 printf(" Bounding box:\n");
324}
325
326////////////////////////////////////////////////////////////////////////////////
327/// Creates a TBuffer3D describing *this* shape.
328/// Coordinates are in local reference frame.
329
331{
333 Int_t nbPnts = n*(n+1)+2;
334 Int_t nbSegs = n*(2*n+3);
335 Int_t nbPols = n*(n+2);
336
338 nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 2*n*5 + n*n*6);
339
340 if (buff)
341 {
342 SetPoints(buff->fPnts);
343 SetSegsAndPols(*buff);
344 }
345
346 return buff;
347}
348
349////////////////////////////////////////////////////////////////////////////////
350/// Fill TBuffer3D structure for segments and polygons.
351
353{
354 Int_t indx, i, j;
356
358
359 Int_t nn1 = (n+1)*n+1;
360 indx = 0;
361 // Lower end-cap (n radial segments)
362 for (j=0; j<n; j++) {
363 buff.fSegs[indx++] = c+2;
364 buff.fSegs[indx++] = 0;
365 buff.fSegs[indx++] = j+1;
366 }
367 // Sectors (n)
368 for (i=0; i<n+1; i++) {
369 // lateral (circles) segments (n)
370 for (j=0; j<n; j++) {
371 buff.fSegs[indx++] = c;
372 buff.fSegs[indx++] = n*i+1+j;
373 buff.fSegs[indx++] = n*i+1+((j+1)%n);
374 }
375 if (i==n) break; // skip i=n for generators
376 // generator segments (n)
377 for (j=0; j<n; j++) {
378 buff.fSegs[indx++] = c;
379 buff.fSegs[indx++] = n*i+1+j;
380 buff.fSegs[indx++] = n*(i+1)+1+j;
381 }
382 }
383 // Upper end-cap
384 for (j=0; j<n; j++) {
385 buff.fSegs[indx++] = c+1;
386 buff.fSegs[indx++] = n*n+1+j;
387 buff.fSegs[indx++] = nn1;
388 }
389
390 indx = 0;
391
392 // lower end-cap (n polygons)
393 for (j=0; j<n; j++) {
394 buff.fPols[indx++] = c+2;
395 buff.fPols[indx++] = 3;
396 buff.fPols[indx++] = n+j;
397 buff.fPols[indx++] = (j+1)%n;
398 buff.fPols[indx++] = j;
399 }
400 // Sectors (n)
401 for (i=0; i<n; i++) {
402 // lateral faces (n)
403 for (j=0; j<n; j++) {
404 buff.fPols[indx++] = c;
405 buff.fPols[indx++] = 4;
406 buff.fPols[indx++] = (2*i+1)*n+j;
407 buff.fPols[indx++] = 2*(i+1)*n+j;
408 buff.fPols[indx++] = (2*i+3)*n+j;
409 buff.fPols[indx++] = 2*(i+1)*n+((j+1)%n);
410 }
411 }
412 // upper end-cap (n polygons)
413 for (j=0; j<n; j++) {
414 buff.fPols[indx++] = c+1;
415 buff.fPols[indx++] = 3;
416 buff.fPols[indx++] = 2*n*(n+1)+j;
417 buff.fPols[indx++] = 2*n*(n+1)+((j+1)%n);
418 buff.fPols[indx++] = (2*n+1)*n+j;
419 }
420}
421
422////////////////////////////////////////////////////////////////////////////////
423/// Computes the closest distance from given point to this shape.
424
426{
427 Double_t safz = fDz-TMath::Abs(point[2]);
428 if (!in) safz = -safz;
429 Double_t safr = TGeoShape::Big();
430 Double_t rsq = point[0]*point[0]+point[1]*point[1];
431 Double_t z0 = fA*rsq+fB;
432 Double_t r0sq = (point[2]-fB)/fA;
433 if (r0sq<0) {
434 if (in) return 0.;
435 return safz;
436 }
437 Double_t dr = TMath::Sqrt(rsq)-TMath::Sqrt(r0sq);
438 if (in) {
439 if (dr>-1.E-8) return 0.;
440 Double_t dz = TMath::Abs(point[2]-z0);
441 safr = -dr*dz/TMath::Sqrt(dr*dr+dz*dz);
442 } else {
443 if (dr<1.E-8) return safz;
444 Double_t talf = -2.*fA*TMath::Sqrt(r0sq);
445 Double_t salf = talf/TMath::Sqrt(1.+talf*talf);
446 safr = TMath::Abs(dr*salf);
447 }
448 if (in) return TMath::Min(safr,safz);
449 return TMath::Max(safr,safz);
450}
451
452////////////////////////////////////////////////////////////////////////////////
453/// Set paraboloid dimensions.
454
456{
457 if ((rlo<0) || (rhi<0) || (dz<=0) || TMath::Abs(rlo-rhi)<TGeoShape::Tolerance()) {
459 Error("SetParaboloidDimensions", "Dimensions of %s invalid: check (rlo>=0) (rhi>=0) (rlo!=rhi) dz>0",GetName());
460 return;
461 }
462 fRlo = rlo;
463 fRhi = rhi;
464 fDz = dz;
465 Double_t dd = 1./(fRhi*fRhi - fRlo*fRlo);
466 fA = 2.*fDz*dd;
467 fB = - fDz * (fRlo*fRlo + fRhi*fRhi)*dd;
468}
469
470////////////////////////////////////////////////////////////////////////////////
471/// Set paraboloid dimensions starting from an array.
472
474{
475 Double_t rlo = param[0];
476 Double_t rhi = param[1];
477 Double_t dz = param[2];
478 SetParaboloidDimensions(rlo, rhi, dz);
479}
480
481////////////////////////////////////////////////////////////////////////////////
482/// Create paraboloid mesh points.
483/// ~~~ {.cpp}
484/// Npoints = n*(n+1) + 2
485/// ifirst = 0
486/// ipoint(i,j) = 1+i*n+j; i=[0,n] j=[0,n-1]
487/// ilast = 1+n*(n+1)
488/// Nsegments = n*(2*n+3)
489/// lower: (0, j+1); j=[0,n-1]
490/// circle(i): (n*i+1+j, n*i+1+(j+1)%n); i=[0,n] j=[0,n-1]
491/// generator(i): (n*i+1+j, n*(i+1)+1+j); i,j=[0,n-1]
492/// upper: (n*n+1+j, (n+1)*n+1) j=[0,n-1]
493/// Npolygons = n*(n+2)
494/// lower: (n+j, (j+1)%n, j) j=[0,n-1]
495/// lateral(i): ((2*i+1)*n+j, 2*(i+1)*n+j, (2*i+3)*n+j, 2*(i+1)*n+(j+1)%n)
496/// i,j = [0,n-1]
497/// upper: ((2n+1)*n+j, 2*n*(n+1)+(j+1)%n, 2*n*(n+1)+j) j=[0,n-1]
498/// ~~~
499
501{
502 if (!points) return;
503 Double_t ttmin, ttmax;
504 ttmin = TMath::ATan2(-fDz, fRlo);
505 ttmax = TMath::ATan2(fDz, fRhi);
507 Double_t dtt = (ttmax-ttmin)/n;
508 Double_t dphi = 360./n;
509 Double_t tt;
510 Double_t r, z, delta;
511 Double_t phi, sph, cph;
512 Int_t indx = 0;
513 // center of the lower endcap:
514 points[indx++] = 0; // x
515 points[indx++] = 0; // y
516 points[indx++] = -fDz;
517 for (Int_t i=0; i<n+1; i++) { // nz planes = n+1
518 if (i==0) {
519 r = fRlo;
520 z = -fDz;
521 } else if (i==n) {
522 r = fRhi;
523 z = fDz;
524 } else {
525 tt = TMath::Tan(ttmin + i*dtt);
526 delta = tt*tt - 4*fA*fB; // should be always positive (a*b<0)
527 r = 0.5*(tt+TMath::Sqrt(delta))/fA;
528 z = r*tt;
529 }
530 for (Int_t j=0; j<n; j++) {
531 phi = j*dphi*TMath::DegToRad();
532 sph=TMath::Sin(phi);
533 cph=TMath::Cos(phi);
534 points[indx++] = r*cph;
535 points[indx++] = r*sph;
536 points[indx++] = z;
537 }
538 }
539 // center of the upper endcap
540 points[indx++] = 0; // x
541 points[indx++] = 0; // y
542 points[indx++] = fDz;
543}
544
545////////////////////////////////////////////////////////////////////////////////
546/// Returns numbers of vertices, segments and polygons composing the shape mesh.
547
548void TGeoParaboloid::GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
549{
551 nvert = n*(n+1)+2;
552 nsegs = n*(2*n+3);
553 npols = n*(n+2);
554}
555
556////////////////////////////////////////////////////////////////////////////////
557/// Returns number of vertices on the paraboloid mesh.
558
560{
562 return (n*(n+1)+2);
563}
564
565////////////////////////////////////////////////////////////////////////////////
566/// Save a primitive as a C++ statement(s) on output stream "out".
567
568void TGeoParaboloid::SavePrimitive(std::ostream &out, Option_t * /*option*/ /*= ""*/)
569{
571 out << " // Shape: " << GetName() << " type: " << ClassName() << std::endl;
572 out << " rlo = " << fRlo << ";" << std::endl;
573 out << " rhi = " << fRhi << ";" << std::endl;
574 out << " dz = " << fDZ << ";" << std::endl;
575 out << " TGeoShape *" << GetPointerName() << " = new TGeoParaboloid(\"" << GetName() << "\", rlo,rhi,dz);" << std::endl;
577}
578
579////////////////////////////////////////////////////////////////////////////////
580/// Create paraboloid mesh points.
581
583{
584 if (!points) return;
585 Double_t ttmin, ttmax;
586 ttmin = TMath::ATan2(-fDz, fRlo);
587 ttmax = TMath::ATan2(fDz, fRhi);
589 Double_t dtt = (ttmax-ttmin)/n;
590 Double_t dphi = 360./n;
591 Double_t tt;
592 Double_t r, z, delta;
593 Double_t phi, sph, cph;
594 Int_t indx = 0;
595 // center of the lower endcap:
596 points[indx++] = 0; // x
597 points[indx++] = 0; // y
598 points[indx++] = -fDz;
599 for (Int_t i=0; i<n+1; i++) { // nz planes = n+1
600 if (i==0) {
601 r = fRlo;
602 z = -fDz;
603 } else if (i==n) {
604 r = fRhi;
605 z = fDz;
606 } else {
607 tt = TMath::Tan(ttmin + i*dtt);
608 delta = tt*tt - 4*fA*fB; // should be always positive (a*b<0)
609 r = 0.5*(tt+TMath::Sqrt(delta))/fA;
610 z = r*tt;
611 }
612 for (Int_t j=0; j<n; j++) {
613 phi = j*dphi*TMath::DegToRad();
614 sph=TMath::Sin(phi);
615 cph=TMath::Cos(phi);
616 points[indx++] = r*cph;
617 points[indx++] = r*sph;
618 points[indx++] = z;
619 }
620 }
621 // center of the upper endcap
622 points[indx++] = 0; // x
623 points[indx++] = 0; // y
624 points[indx++] = fDz;
625}
626
627////////////////////////////////////////////////////////////////////////////////
629{
630}
631
632////////////////////////////////////////////////////////////////////////////////
633/// Fills a static 3D buffer and returns a reference.
634
635const TBuffer3D & TGeoParaboloid::GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
636{
637 static TBuffer3D buffer(TBuffer3DTypes::kGeneric);
638 TGeoBBox::FillBuffer3D(buffer, reqSections, localFrame);
639
640 if (reqSections & TBuffer3D::kRawSizes) {
642 Int_t nbPnts = n*(n+1)+2;
643 Int_t nbSegs = n*(2*n+3);
644 Int_t nbPols = n*(n+2);
645 if (buffer.SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 2*n*5 + n*n*6)) {
647 }
648 }
649 if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) {
650 SetPoints(buffer.fPnts);
651 if (!buffer.fLocalFrame) {
652 TransformPoints(buffer.fPnts, buffer.NbPnts());
653 }
654 SetSegsAndPols(buffer);
656 }
657
658 return buffer;
659}
660
661////////////////////////////////////////////////////////////////////////////////
662/// Check the inside status for each of the points in the array.
663/// Input: Array of point coordinates + vector size
664/// Output: Array of Booleans for the inside of each point
665
666void TGeoParaboloid::Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
667{
668 for (Int_t i=0; i<vecsize; i++) inside[i] = Contains(&points[3*i]);
669}
670
671////////////////////////////////////////////////////////////////////////////////
672/// Compute the normal for an array o points so that norm.dot.dir is positive
673/// Input: Arrays of point coordinates and directions + vector size
674/// Output: Array of normal directions
675
676void TGeoParaboloid::ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
677{
678 for (Int_t i=0; i<vecsize; i++) ComputeNormal(&points[3*i], &dirs[3*i], &norms[3*i]);
679}
680
681////////////////////////////////////////////////////////////////////////////////
682/// Compute distance from array of input points having directions specified by dirs. Store output in dists
683
684void TGeoParaboloid::DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
685{
686 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
687}
688
689////////////////////////////////////////////////////////////////////////////////
690/// Compute distance from array of input points having directions specified by dirs. Store output in dists
691
692void TGeoParaboloid::DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t* step) const
693{
694 for (Int_t i=0; i<vecsize; i++) dists[i] = DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
695}
696
697////////////////////////////////////////////////////////////////////////////////
698/// Compute safe distance from each of the points in the input array.
699/// Input: Array of point coordinates, array of statuses for these points, size of the arrays
700/// Output: Safety values
701
702void TGeoParaboloid::Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
703{
704 for (Int_t i=0; i<vecsize; i++) safe[i] = Safety(&points[3*i], inside[i]);
705}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
#define c(i)
Definition: RSha256.hxx:101
int Int_t
Definition: RtypesCore.h:41
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
float Float_t
Definition: RtypesCore.h:53
const Bool_t kTRUE
Definition: RtypesCore.h:87
const char Option_t
Definition: RtypesCore.h:62
#define ClassImp(name)
Definition: Rtypes.h:365
char name[80]
Definition: TGX11.cxx:109
R__EXTERN TGeoManager * gGeoManager
Definition: TGeoManager.h:601
point * points
Definition: X3DBuffer.c:22
Generic 3D primitive description class.
Definition: TBuffer3D.h:18
Int_t * fPols
Definition: TBuffer3D.h:114
UInt_t NbPnts() const
Definition: TBuffer3D.h:80
Bool_t SectionsValid(UInt_t mask) const
Definition: TBuffer3D.h:67
@ kRawSizes
Definition: TBuffer3D.h:53
void SetSectionsValid(UInt_t mask)
Definition: TBuffer3D.h:65
Int_t * fSegs
Definition: TBuffer3D.h:113
Bool_t fLocalFrame
Definition: TBuffer3D.h:90
Bool_t SetRawSizes(UInt_t reqPnts, UInt_t reqPntsCapacity, UInt_t reqSegs, UInt_t reqSegsCapacity, UInt_t reqPols, UInt_t reqPolsCapacity)
Set kRaw tessellation section of buffer with supplied sizes.
Definition: TBuffer3D.cxx:359
Double_t * fPnts
Definition: TBuffer3D.h:112
Box class.
Definition: TGeoBBox.h:18
Double_t fDX
Definition: TGeoBBox.h:21
virtual void InspectShape() const
Prints shape parameters.
Definition: TGeoBBox.cxx:793
Double_t fDY
Definition: TGeoBBox.h:22
Double_t fDZ
Definition: TGeoBBox.h:23
virtual void FillBuffer3D(TBuffer3D &buffer, Int_t reqSections, Bool_t localFrame) const
Fills the supplied buffer, with sections in desired frame See TBuffer3D.h for explanation of sections...
Definition: TGeoBBox.cxx:1033
Int_t GetNsegments() const
Get number of segments approximating circles.
Geometrical transformation package.
Definition: TGeoMatrix.h:41
Paraboloid class.
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother
virtual Bool_t Contains(const Double_t *point) const
test if point is inside the elliptical tube
Double_t DistToParaboloid(const Double_t *point, const Double_t *dir, Bool_t in) const
Compute distance from a point to the parabola given by: z = a*rsq + b; rsq = x*x+y*y
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
Computes the closest distance from given point to this shape.
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide the paraboloid along one axis.
virtual const TBuffer3D & GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
Fills a static 3D buffer and returns a reference.
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
virtual void SetSegsAndPols(TBuffer3D &buff) const
Fill TBuffer3D structure for segments and polygons.
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const
Returns numbers of vertices, segments and polygons composing the shape mesh.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
compute closest distance from point px,py to each vertex
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
virtual void SetPoints(Double_t *points) const
Create paraboloid mesh points.
void SetParaboloidDimensions(Double_t rlo, Double_t rhi, Double_t dz)
Set paraboloid dimensions.
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
virtual TBuffer3D * MakeBuffer3D() const
Creates a TBuffer3D describing this shape.
virtual Int_t GetNmeshVertices() const
Returns number of vertices on the paraboloid mesh.
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from inside point to surface of the paraboloid
virtual void SetDimensions(Double_t *param)
Set paraboloid dimensions starting from an array.
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
compute distance from outside point to surface of the paraboloid and safe distance
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual void ComputeBBox()
compute bounding box of the tube
virtual void Sizeof3D() const
virtual ~TGeoParaboloid()
destructor
TGeoParaboloid()
Dummy constructor.
virtual void InspectShape() const
print shape parameters
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Base abstract class for all shapes.
Definition: TGeoShape.h:26
static Double_t Big()
Definition: TGeoShape.h:88
Int_t GetBasicColor() const
Get the basic color (0-7).
Definition: TGeoShape.cxx:673
void TransformPoints(Double_t *points, UInt_t NbPoints) const
Tranform a set of points (LocalToMaster)
Definition: TGeoShape.cxx:552
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
Definition: TGeoShape.cxx:524
const char * GetPointerName() const
Provide a pointer name containing uid.
Definition: TGeoShape.cxx:699
Int_t ShapeDistancetoPrimitive(Int_t numpoints, Int_t px, Int_t py) const
Returns distance to shape primitive mesh.
Definition: TGeoShape.cxx:259
virtual const char * GetName() const
Get the shape name.
Definition: TGeoShape.cxx:248
@ kGeoSavePrimitive
Definition: TGeoShape.h:65
@ kGeoParaboloid
Definition: TGeoShape.h:62
@ kGeoRunTimeShape
Definition: TGeoShape.h:41
static Double_t Tolerance()
Definition: TGeoShape.h:91
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
Definition: TGeoVolume.h:53
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:172
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
const Int_t n
Definition: legend1.C:16
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:212
T1 Sign(T1 a, T2 b)
Definition: TMathBase.h:165
Double_t ATan2(Double_t, Double_t)
Definition: TMath.h:667
constexpr Double_t DegToRad()
Conversion from degree to radian:
Definition: TMath.h:82
Double_t Sqrt(Double_t x)
Definition: TMath.h:679
Short_t Min(Short_t a, Short_t b)
Definition: TMathBase.h:180
Double_t Cos(Double_t)
Definition: TMath.h:629
constexpr Double_t Pi()
Definition: TMath.h:38
Double_t Sin(Double_t)
Definition: TMath.h:625
Double_t Tan(Double_t)
Definition: TMath.h:633
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
auto * tt
Definition: textangle.C:16
auto * a
Definition: textangle.C:12
static long int sum(long int i)
Definition: Factory.cxx:2258