13#ifndef ROOT_TFumiliMinimizer
14#define ROOT_TFumiliMinimizer
78 virtual bool SetVariable(
unsigned int ivar,
const std::string &
name,
double val,
double step);
81 virtual bool SetLimitedVariable(
unsigned int ivar ,
const std::string &
name ,
double val ,
double step ,
double ,
double );
106 virtual const double *
X()
const {
return &
fParams.front(); }
112 virtual unsigned int NCalls()
const {
return 0; }
132 virtual double CovMatrix(
unsigned int i,
unsigned int j)
const {
140 if (
fCovar.size() == 0)
return 0;
151 static void Fcn(
int &,
double * ,
double &
f,
double * ,
int);
static RooMathCoreReg dummy
#define ClassDef(name, id)
FitMethodFunction class Interface for objective functions (like chi2 and likelihood used in the fit) ...
Documentation for the abstract class IBaseFunctionMultiDim.
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Abstract Minimizer class, defining the interface for the various minimizer (like Minuit2,...
virtual bool SetLowerLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double lower)
set a new lower limit variable (override if minimizer supports them )
virtual bool SetUpperLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double upper)
set a new upper limit variable (override if minimizer supports them )
TFumiliMinimizer class: minimizer implementation based on TFumili.
~TFumiliMinimizer()
Destructor (no operations)
virtual bool Minimize()
method to perform the minimization
static ROOT::Math::FitMethodFunction * fgFunc
TFumiliMinimizer(int dummy=0)
Default constructor (an argument is needed by plug-in manager)
virtual bool SetVariableValue(unsigned int ivar, double val)
set the value of an existing variable
std::vector< double > fParams
virtual bool SetFixedVariable(unsigned int, const std::string &, double)
set fixed variable (override if minimizer supports them )
virtual const double * MinGradient() const
return pointer to gradient values at the minimum
virtual const double * Errors() const
return errors at the minimum
static double EvaluateFCN(const double *x, double *g)
implementation of FCN for Fumili when user provided gradient is used
virtual bool SetVariable(unsigned int ivar, const std::string &name, double val, double step)
set free variable
virtual bool SetLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double, double)
set upper/lower limited variable (override if minimizer supports them )
static ROOT::Math::FitMethodGradFunction * fgGradFunc
virtual double Edm() const
return expected distance reached from the minimum
virtual unsigned int NCalls() const
number of function calls to reach the minimum
virtual double MinValue() const
return minimum function value
TFumiliMinimizer & operator=(const TFumiliMinimizer &rhs)
Assignment operator.
virtual bool ProvidesError() const
minimizer provides error and error matrix
static TFumili * fgFumili
virtual unsigned int NFree() const
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the to...
virtual const double * X() const
return pointer to X values at the minimum
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)
set the function to minimize
virtual double CovMatrix(unsigned int i, unsigned int j) const
return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the v...
virtual int CovMatrixStatus() const
return status of covariance matrix using Minuit convention {0 not calculated 1 approximated 2 made po...
std::vector< double > fErrors
std::vector< double > fCovar
virtual unsigned int NDim() const
this is <= Function().NDim() which is the total number of variables (free+ constrained ones)
static void Fcn(int &, double *, double &f, double *, int)
implementation of FCN for Fumili