58 fLogger( new
MsgLogger(
"ResultsRegression", kINFO) )
66 : fSize(inputVectors->size()),
67 fKernelFunction(kernelFunction),
68 fLogger( new
MsgLogger(
"SVKernelMatrix", kINFO) )
74 Log() << kFATAL <<
"Input data too large. Not enough memory to allocate memory for Support Vector Kernel Matrix. Please reduce the number of input events or use a different method."<<
Endl;
79 for (
UInt_t j = 0; j <=i; j++) {
90 for (
UInt_t i = fSize -1; i > 0; i--) {
91 delete[] fSVKernelMatrix[i];
92 fSVKernelMatrix[i] = 0;
94 delete[] fSVKernelMatrix;
110 fLine[i] = fSVKernelMatrix[
line][i];
112 fLine[i] = fSVKernelMatrix[i][
line];
122 if (i > j)
return fSVKernelMatrix[i][j];
123 else return fSVKernelMatrix[j][i];
ostringstream derivative to redirect and format output
Kernel for Support Vector Machine.
Float_t Evaluate(SVEvent *ev1, SVEvent *ev2)
Float_t GetElement(UInt_t i, UInt_t j)
returns an element of the kernel matrix
SVKernelMatrix()
constructor
~SVKernelMatrix()
destructor
Float_t * GetLine(UInt_t)
returns a row of the kernel matrix
Float_t ** fSVKernelMatrix
SVKernelFunction * fKernelFunction
MsgLogger & Log() const
message logger
MsgLogger & Endl(MsgLogger &ml)