79 RooAbsOptTestStatistic(
name,title,func,xydata,
RooArgSet(),0,0,1,
RooFit::
Interleave,0,0),
81 _integrate(integrate),
82 _intConfig(*defaultIntegratorConfig()),
107 RooAbsOptTestStatistic(
name,title,func,xydata,
RooArgSet(),0,0,1,
RooFit::
Interleave,0,0),
109 _integrate(integrate),
110 _intConfig(*defaultIntegratorConfig()),
138 RooAbsOptTestStatistic(
name,title,extPdf,xydata,
RooArgSet(),0,0,1,
RooFit::
Interleave,0,0),
140 _integrate(integrate),
141 _intConfig(*defaultIntegratorConfig()),
145 throw(
string(
Form(
"RooXYChi2Var::ctor(%s) ERROR: Input p.d.f. must be an extendible",
GetName()))) ;
172 RooAbsOptTestStatistic(
name,title,extPdf,xydata,
RooArgSet(),0,0,1,
RooFit::
Interleave,0,0),
174 _integrate(integrate),
175 _intConfig(*defaultIntegratorConfig()),
179 throw(
string(
Form(
"RooXYChi2Var::ctor(%s) ERROR: Input p.d.f. must be an extendible",
GetName()))) ;
193 _extended(other._extended),
194 _integrate(other._integrate),
195 _intConfig(other._intConfig),
290 var->
setVal(cxval - xerr/100) ;
294 var->
setVal(cxval + xerr/100) ;
298 Double_t slope = (fxmax-fxmin)/(2*xerr/100.) ;
303 if ((ydata>cxval && fxmax>fxmin) || (ydata<=cxval && fxmax<=fxmin)) {
305 ret +=
pow(xerrHi*slope,2) ;
308 ret +=
pow(xerrLo*slope,2) ;
318 var->
setVal(cxval - xerr/100) ;
322 var->
setVal(cxval + xerr/100) ;
326 Double_t slope = (fxmax-fxmin)/(2*xerr/100.) ;
334 ret +=
pow(xerr*slope,2) ;
363 for (list<RooAbsBinning*>::const_iterator iter =
_binList.begin() ; iter !=
_binList.end() ; ++iter) {
372 return ret / volume ;
396 for (
Int_t i=firstEvent ; i<lastEvent ; i+=stepSize) {
401 if (!xydata->
valid()) {
420 ydata = xydata->
weight() ;
437 coutE(
Eval) <<
"RooXYChi2Var::RooXYChi2Var(" <<
GetName() <<
") INFINITY ERROR: data point " << i
438 <<
" has zero error, but function is not zero (f=" << yfunc <<
")" << endl ;
446 carry = (t - result) -
y;
double pow(double, double)
char * Form(const char *fmt,...)
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
TIterator * createIterator(Bool_t dir=kIterForward) const R__SUGGEST_ALTERNATIVE("begin()
TIterator-style iteration over contained elements.
RooAbsArg * find(const char *name) const
Find object with given name in list.
virtual void recalculateCache(const RooArgSet *, Int_t, Int_t, Int_t, Bool_t)
virtual const RooArgSet * get() const
RooAbsDataStore * store()
virtual Bool_t valid() const
RooAbsOptTestStatistic is the abstract base class for test statistics objects that evaluate a functio...
Bool_t canBeExtended() const
virtual Double_t expectedEvents(const RooArgSet *nset) const
Return expected number of events from this p.d.f for use in extended likelihood calculations.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Double_t getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooAbsReal * createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create an object that represents the integral of the function over one or more observables listed in ...
Double_t _evalCarry
avoids loss of precision
RooArgSet is a container object that can hold multiple RooAbsArg objects.
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
virtual Bool_t setLabel(const char *label, Bool_t printError=kTRUE)
Set value by specifying the name of the desired state If printError is set, a message will be printed...
RooDataSet is a container class to hold unbinned data.
virtual const RooArgSet * get(Int_t index) const
Return RooArgSet with coordinates of event 'index'.
virtual void weightError(Double_t &lo, Double_t &hi, ErrorType etype=SumW2) const
Return asymmetric error on weight. (Dummy implementation returning zero)
virtual Double_t weight() const
Return event weight of current event.
void setEpsAbs(Double_t newEpsAbs)
Set absolute convergence criteria (convergence if abs(Err)<newEpsAbs)
void setEpsRel(Double_t newEpsRel)
Set relative convergence criteria (convergence if abs(Err)/abs(Int)<newEpsRel)
RooRealVar represents a fundamental (non-derived) real valued object.
Double_t getAsymErrorLo() const
Double_t getErrorHi() const
Bool_t hasAsymError(Bool_t allowZero=kTRUE) const
Double_t getErrorLo() const
Double_t getAsymErrorHi() const
Bool_t hasError(Bool_t allowZero=kTRUE) const
Double_t getError() const
virtual void setVal(Double_t value)
Set value of variable to 'value'.
RooArgSet requiredExtraObservables() const
std::list< RooAbsBinning * > _binList
Function integral.
void initIntegrator()
Initialize bin content integrator.
RooXYChi2Var()
coverity[UNINIT_CTOR]
virtual ~RooXYChi2Var()
Destructor.
Double_t fy() const
Return function value requested bu present configuration.
void initialize()
Iterator over set of real-valued observables.
RooNumIntConfig _intConfig
virtual Double_t evaluatePartition(Int_t firstEvent, Int_t lastEvent, Int_t stepSize) const
Calculate chi^2 in partition from firstEvent to lastEvent using given stepSize.
Double_t xErrorContribution(Double_t ydata) const
Calculate contribution to internal error due to error on 'x' coordinates at point i.
Iterator abstract base class.
virtual TObject * Next()=0
virtual const char * GetName() const
Returns name of object.
Template specialisation used in RooAbsArg: