Logo ROOT   6.18/05
Reference Guide
RooNovosibirsk.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitModels *
4 * @(#)root/roofit:$Id$
5 * Authors: *
6 * DB, Dieter Best, UC Irvine, best@slac.stanford.edu *
7 * HT, Hirohisa Tanaka SLAC tanaka@slac.stanford.edu *
8 * *
9 * Updated version with analytical integral *
10 * MP, Marko Petric, J. Stefan Institute, marko.petric@ijs.si *
11 * *
12 * Copyright (c) 2000-2013, Regents of the University of California *
13 * and Stanford University. All rights reserved. *
14 * *
15 * Redistribution and use in source and binary forms, *
16 * with or without modification, are permitted according to the terms *
17 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
18 *****************************************************************************/
19
20/** \class RooNovosibirsk
21 \ingroup Roofit
22
23RooNovosibirsk implements the Novosibirsk function
24
25Function taken from H. Ikeda et al. NIM A441 (2000), p. 401 (Belle Collaboration)
26
27**/
28
29#include "RooFit.h"
30
31#include <math.h>
32#include "TMath.h"
33
34#include "RooNovosibirsk.h"
35#include "RooRealVar.h"
36
37using namespace std;
38
40
41////////////////////////////////////////////////////////////////////////////////
42
43RooNovosibirsk::RooNovosibirsk(const char *name, const char *title,
44 RooAbsReal& _x, RooAbsReal& _peak,
45 RooAbsReal& _width, RooAbsReal& _tail) :
46 // The two addresses refer to our first dependent variable and
47 // parameter, respectively, as declared in the rdl file
48 RooAbsPdf(name, title),
49 x("x","x",this,_x),
50 width("width","width",this,_width),
51 peak("peak","peak",this,_peak),
52 tail("tail","tail",this,_tail)
53{
54}
55
56////////////////////////////////////////////////////////////////////////////////
57
59 RooAbsPdf(other,name),
60 x("x",this,other.x),
61 width("width",this,other.width),
62 peak("peak",this,other.peak),
63 tail("tail",this,other.tail)
64{
65}
66
67////////////////////////////////////////////////////////////////////////////////
68///If tail=eta=0 the Belle distribution becomes gaussian
69
71{
72 if (TMath::Abs(tail) < 1.e-7) {
73 return TMath::Exp( -0.5 * TMath::Power( ( (x - peak) / width ), 2 ));
74 }
75
76 Double_t arg = 1.0 - ( x - peak ) * tail / width;
77
78 if (arg < 1.e-7) {
79 //Argument of logarithm negative. Real continuation -> function equals zero
80 return 0.0;
81 }
82
83 Double_t log = TMath::Log(arg);
84 static const Double_t xi = 2.3548200450309494; // 2 Sqrt( Ln(4) )
85
86 Double_t width_zero = ( 2.0 / xi ) * TMath::ASinH( tail * xi * 0.5 );
87 Double_t width_zero2 = width_zero * width_zero;
88 Double_t exponent = ( -0.5 / (width_zero2) * log * log ) - ( width_zero2 * 0.5 );
89
90 return TMath::Exp(exponent) ;
91}
92
93////////////////////////////////////////////////////////////////////////////////
94
95Int_t RooNovosibirsk::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* ) const
96{
97 if (matchArgs(allVars,analVars,x)) return 1 ;
98 if (matchArgs(allVars,analVars,peak)) return 2 ;
99
100 //The other two integrals over tali and width are not integrable
101
102 return 0 ;
103}
104
105////////////////////////////////////////////////////////////////////////////////
106
107Double_t RooNovosibirsk::analyticalIntegral(Int_t code, const char* rangeName) const
108{
109 assert(code==1 || code==2) ;
110
111 //The range is defined as [A,B]
112
113 //Numerical values need for the evaluation of the integral
114 static const Double_t sqrt2 = 1.4142135623730950; // Sqrt(2)
115 static const Double_t sqlog2 = 0.832554611157697756; //Sqrt( Log(2) )
116 static const Double_t sqlog4 = 1.17741002251547469; //Sqrt( Log(4) )
117 static const Double_t log4 = 1.38629436111989062; //Log(2)
118 static const Double_t rootpiby2 = 1.2533141373155003; // Sqrt(pi/2)
119 static const Double_t sqpibylog2 = 2.12893403886245236; //Sqrt( pi/Log(2) )
120
121 if (code==1) {
122 Double_t A = x.min(rangeName);
123 Double_t B = x.max(rangeName);
124
125 Double_t result = 0;
126
127
128 //If tail==0 the function becomes gaussian, thus we return a Gaussian integral
129 if (TMath::Abs(tail) < 1.e-7) {
130
131 Double_t xscale = sqrt2*width;
132
133 result = rootpiby2*width*(TMath::Erf((B-peak)/xscale)-TMath::Erf((A-peak)/xscale));
134
135 return result;
136
137 }
138
139 // If the range is not defined correctly the function becomes complex
140 Double_t log_argument_A = ( (peak - A)*tail + width ) / width ;
141 Double_t log_argument_B = ( (peak - B)*tail + width ) / width ;
142
143 //lower limit
144 if ( log_argument_A < 1.e-7) {
145 log_argument_A = 1.e-7;
146 }
147
148 //upper limit
149 if ( log_argument_B < 1.e-7) {
150 log_argument_B = 1.e-7;
151 }
152
153 Double_t term1 = TMath::ASinH( tail * sqlog4 );
154 Double_t term1_2 = term1 * term1;
155
156 //Calculate the error function arguments
157 Double_t erf_termA = ( term1_2 - log4 * TMath::Log( log_argument_A ) ) / ( 2 * term1 * sqlog2 );
158 Double_t erf_termB = ( term1_2 - log4 * TMath::Log( log_argument_B ) ) / ( 2 * term1 * sqlog2 );
159
160 result = 0.5 / tail * width * term1 * ( TMath::Erf(erf_termB) - TMath::Erf(erf_termA)) * sqpibylog2;
161
162 return result;
163
164 } else if (code==2) {
165 Double_t A = x.min(rangeName);
166 Double_t B = x.max(rangeName);
167
168 Double_t result = 0;
169
170
171 //If tail==0 the function becomes gaussian, thus we return a Gaussian integral
172 if (TMath::Abs(tail) < 1.e-7) {
173
174 Double_t xscale = sqrt2*width;
175
176 result = rootpiby2*width*(TMath::Erf((B-x)/xscale)-TMath::Erf((A-x)/xscale));
177
178 return result;
179
180 }
181
182 // If the range is not defined correctly the function becomes complex
183 Double_t log_argument_A = ( (A - x)*tail + width ) / width;
184 Double_t log_argument_B = ( (B - x)*tail + width ) / width;
185
186 //lower limit
187 if ( log_argument_A < 1.e-7) {
188 log_argument_A = 1.e-7;
189 }
190
191 //upper limit
192 if ( log_argument_B < 1.e-7) {
193 log_argument_B = 1.e-7;
194 }
195
196 Double_t term1 = TMath::ASinH( tail * sqlog4 );
197 Double_t term1_2 = term1 * term1;
198
199 //Calculate the error function arguments
200 Double_t erf_termA = ( term1_2 - log4 * TMath::Log( log_argument_A ) ) / ( 2 * term1 * sqlog2 );
201 Double_t erf_termB = ( term1_2 - log4 * TMath::Log( log_argument_B ) ) / ( 2 * term1 * sqlog2 );
202
203 result = 0.5 / tail * width * term1 * ( TMath::Erf(erf_termB) - TMath::Erf(erf_termA)) * sqpibylog2;
204
205 return result;
206
207 }
208
209 // Emit fatal error
210 coutF(Eval) << "Error in RooNovosibirsk::analyticalIntegral" << std::endl;
211
212 // Put dummy return here to avoid compiler warnings
213 return 1.0 ;
214}
#define coutF(a)
Definition: RooMsgService.h:35
int Int_t
Definition: RtypesCore.h:41
double Double_t
Definition: RtypesCore.h:55
#define ClassImp(name)
Definition: Rtypes.h:365
include TDocParser_001 C image html pict1_TDocParser_001 png width
Definition: TDocParser.cxx:121
char name[80]
Definition: TGX11.cxx:109
double log(double)
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooNovosibirsk implements the Novosibirsk function.
RooRealProxy width
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported.
Double_t evaluate() const
If tail=eta=0 the Belle distribution becomes gaussian.
RooRealProxy peak
RooRealProxy tail
RooRealProxy x
Double_t min(const char *rname=0) const
Definition: RooRealProxy.h:56
Double_t max(const char *rname=0) const
Definition: RooRealProxy.h:57
Double_t x[n]
Definition: legend1.C:17
static double B[]
static double A[]
Double_t Exp(Double_t x)
Definition: TMath.h:715
Double_t Erf(Double_t x)
Computation of the error function erf(x).
Definition: TMath.cxx:184
Double_t ASinH(Double_t)
Definition: TMath.cxx:64
Double_t Log(Double_t x)
Definition: TMath.h:748
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Definition: TMath.h:723
Short_t Abs(Short_t d)
Definition: TMathBase.h:120