Logo ROOT   6.18/05
Reference Guide
Minuit2Minimizer.h
Go to the documentation of this file.
1// @(#)root/minuit2:$Id$
2// Author: L. Moneta Wed Oct 18 11:48:00 2006
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7 * *
8 * *
9 **********************************************************************/
10
11// Header file for class Minuit2Minimizer
12
13#ifndef ROOT_Minuit2_Minuit2Minimizer
14#define ROOT_Minuit2_Minuit2Minimizer
15
16#include "Math/Minimizer.h"
17
19
20#include "Math/IFunctionfwd.h"
21
22
23
24namespace ROOT {
25
26 namespace Minuit2 {
27
28 class ModularFunctionMinimizer;
29 class FCNBase;
30 class FunctionMinimum;
31 class MnTraceObject;
32
33 // enumeration specifying the type of Minuit2 minimizers
41 };
42
43 }
44
45 namespace Minuit2 {
46//_____________________________________________________________________________________________________
47/**
48 Minuit2Minimizer class implementing the ROOT::Math::Minimizer interface for
49 Minuit2 minimization algorithm.
50 In ROOT it can be instantiated using the plug-in manager (plug-in "Minuit2")
51 Using a string (used by the plugin manager) or via an enumeration
52 an one can set all the possible minimization algorithms (Migrad, Simplex, Combined, Scan and Fumili).
53
54 @ingroup Minuit
55*/
57
58public:
59
60 /**
61 Default constructor
62 */
64
65 /**
66 Constructor with a char (used by PM)
67 */
68 Minuit2Minimizer (const char * type);
69
70 /**
71 Destructor (no operations)
72 */
73 virtual ~Minuit2Minimizer ();
74
75private:
76 // usually copying is non trivial, so we make this unaccessible
77
78 /**
79 Copy constructor
80 */
82
83 /**
84 Assignment operator
85 */
87
88public:
89
90 // clear resources (parameters) for consecutives minimizations
91 virtual void Clear();
92
93 /// set the function to minimize
94 virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func);
95
96 /// set gradient the function to minimize
97 virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func);
98
99 /// set free variable
100 virtual bool SetVariable(unsigned int ivar, const std::string & name, double val, double step);
101
102 /// set lower limit variable (override if minimizer supports them )
103 virtual bool SetLowerLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double lower );
104 /// set upper limit variable (override if minimizer supports them )
105 virtual bool SetUpperLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double upper );
106 /// set upper/lower limited variable (override if minimizer supports them )
107 virtual bool SetLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double /* lower */, double /* upper */);
108 /// set fixed variable (override if minimizer supports them )
109 virtual bool SetFixedVariable(unsigned int /* ivar */, const std::string & /* name */, double /* val */);
110 /// set variable
111 virtual bool SetVariableValue(unsigned int ivar, double val);
112 // set variable values
113 virtual bool SetVariableValues(const double * val);
114 /// set the step size of an already existing variable
115 virtual bool SetVariableStepSize(unsigned int ivar, double step );
116 /// set the lower-limit of an already existing variable
117 virtual bool SetVariableLowerLimit(unsigned int ivar, double lower);
118 /// set the upper-limit of an already existing variable
119 virtual bool SetVariableUpperLimit(unsigned int ivar, double upper);
120 /// set the limits of an already existing variable
121 virtual bool SetVariableLimits(unsigned int ivar, double lower, double upper);
122 /// fix an existing variable
123 virtual bool FixVariable(unsigned int ivar);
124 /// release an existing variable
125 virtual bool ReleaseVariable(unsigned int ivar);
126 /// query if an existing variable is fixed (i.e. considered constant in the minimization)
127 /// note that by default all variables are not fixed
128 virtual bool IsFixedVariable(unsigned int ivar) const;
129 /// get variable settings in a variable object (like ROOT::Fit::ParamsSettings)
130 virtual bool GetVariableSettings(unsigned int ivar, ROOT::Fit::ParameterSettings & varObj) const;
131 /// get name of variables (override if minimizer support storing of variable names)
132 virtual std::string VariableName(unsigned int ivar) const;
133 /// get index of variable given a variable given a name
134 /// return -1 if variable is not found
135 virtual int VariableIndex(const std::string & name) const;
136
137 /**
138 method to perform the minimization.
139 Return false in case the minimization did not converge. In this case a
140 status code different than zero is set
141 (retrieved by the derived method Minimizer::Status() )"
142
143 status = 1 : Covariance was made pos defined
144 status = 2 : Hesse is invalid
145 status = 3 : Edm is above max
146 status = 4 : Reached call limit
147 status = 5 : Any other failure
148 */
149 virtual bool Minimize();
150
151 /// return minimum function value
152 virtual double MinValue() const { return fState.Fval(); }
153
154 /// return expected distance reached from the minimum
155 virtual double Edm() const { return fState.Edm(); }
156
157 /// return pointer to X values at the minimum
158 virtual const double * X() const;
159
160 /// return pointer to gradient values at the minimum
161 virtual const double * MinGradient() const { return 0; } // not available in Minuit2
162
163 /// number of function calls to reach the minimum
164 virtual unsigned int NCalls() const { return fState.NFcn(); }
165
166 /// this is <= Function().NDim() which is the total
167 /// number of variables (free+ constrained ones)
168 virtual unsigned int NDim() const { return fDim; }
169
170 /// number of free variables (real dimension of the problem)
171 /// this is <= Function().NDim() which is the total
172 virtual unsigned int NFree() const { return fState.VariableParameters(); }
173
174 /// minimizer provides error and error matrix
175 virtual bool ProvidesError() const { return true; }
176
177 /// return errors at the minimum
178 virtual const double * Errors() const;
179
180 /**
181 return covariance matrix elements
182 if the variable is fixed or const the value is zero
183 The ordering of the variables is the same as in errors and parameter value.
184 This is different from the direct interface of Minuit2 or TMinuit where the
185 values were obtained only to variable parameters
186 */
187 virtual double CovMatrix(unsigned int i, unsigned int j) const;
188
189
190 /**
191 Fill the passed array with the covariance matrix elements
192 if the variable is fixed or const the value is zero.
193 The array will be filled as cov[i *ndim + j]
194 The ordering of the variables is the same as in errors and parameter value.
195 This is different from the direct interface of Minuit2 or TMinuit where the
196 values were obtained only to variable parameters
197 */
198 virtual bool GetCovMatrix(double * cov) const;
199
200 /**
201 Fill the passed array with the Hessian matrix elements
202 The Hessian matrix is the matrix of the second derivatives
203 and is the inverse of the covariance matrix
204 If the variable is fixed or const the values for that variables are zero.
205 The array will be filled as h[i *ndim + j]
206 */
207 virtual bool GetHessianMatrix(double * h) const;
208
209
210 /**
211 return the status of the covariance matrix
212 status = -1 : not available (inversion failed or Hesse failed)
213 status = 0 : available but not positive defined
214 status = 1 : covariance only approximate
215 status = 2 : full matrix but forced pos def
216 status = 3 : full accurate matrix
217
218 */
219 virtual int CovMatrixStatus() const;
220 /**
221 return correlation coefficient between variable i and j.
222 If the variable is fixed or const the return value is zero
223 */
224 virtual double Correlation(unsigned int i, unsigned int j ) const;
225
226 /**
227 get global correlation coefficient for the variable i. This is a number between zero and one which gives
228 the correlation between the i-th variable and that linear combination of all other variables which
229 is most strongly correlated with i.
230 If the variable is fixed or const the return value is zero
231 */
232 virtual double GlobalCC(unsigned int i) const;
233
234 /**
235 get the minos error for parameter i, return false if Minos failed
236 A minimizaiton must be performed befre, return false if no minimization has been done
237 In case of Minos failed the status error is updated as following
238 status += 10 * minosStatus where the minos status is:
239 status = 1 : maximum number of function calls exceeded when running for lower error
240 status = 2 : maximum number of function calls exceeded when running for upper error
241 status = 3 : new minimum found when running for lower error
242 status = 4 : new minimum found when running for upper error
243 status = 5 : any other failure
244
245 */
246 virtual bool GetMinosError(unsigned int i, double & errLow, double & errUp, int = 0);
247
248 /**
249 scan a parameter i around the minimum. A minimization must have been done before,
250 return false if it is not the case
251 */
252 virtual bool Scan(unsigned int i, unsigned int & nstep, double * x, double * y, double xmin = 0, double xmax = 0);
253
254 /**
255 find the contour points (xi,xj) of the function for parameter i and j around the minimum
256 The contour will be find for value of the function = Min + ErrorUp();
257 */
258 virtual bool Contour(unsigned int i, unsigned int j, unsigned int & npoints, double *xi, double *xj);
259
260
261 /**
262 perform a full calculation of the Hessian matrix for error calculation
263 If a valid minimum exists the calculation is done on the minimum point otherwise is performed
264 in the current set values of parameters
265 Status code of minimizer is updated according to the following convention (in case Hesse failed)
266 status += 100*hesseStatus where hesse status is:
267 status = 1 : hesse failed
268 status = 2 : matrix inversion failed
269 status = 3 : matrix is not pos defined
270 */
271 virtual bool Hesse();
272
273
274 /// return reference to the objective function
275 ///virtual const ROOT::Math::IGenFunction & Function() const;
276
277 /// print result of minimization
278 virtual void PrintResults();
279
280 /// set an object to trace operation for each iteration
281 /// The object muust implement operator() (unsigned int, MinimumState & state)
282 void SetTraceObject(MnTraceObject & obj);
283
284 /// set storage level = 1 : store all iteration states (default)
285 /// = 0 : store only first and last state to save memory
286 void SetStorageLevel(int level);
287
288 /// return the minimizer state (containing values, step size , etc..)
290
291protected:
292
293 // protected function for accessing the internal Minuit2 object. Needed for derived classes
294
296
298
300
301 virtual const ROOT::Minuit2::FCNBase * GetFCN() const { return fMinuitFCN; }
302
303 /// examine the minimum result
305
306private:
307
308 unsigned int fDim; // dimension of the function to be minimized
310
312 // std::vector<ROOT::Minuit2::MinosError> fMinosErrors;
316 mutable std::vector<double> fValues;
317 mutable std::vector<double> fErrors;
318
319};
320
321 } // end namespace Fit
322
323} // end namespace ROOT
324
325
326
327#endif /* ROOT_Minuit2_Minuit2Minimizer */
#define h(i)
Definition: RSha256.hxx:106
char name[80]
Definition: TGX11.cxx:109
int type
Definition: TGX11.cxx:120
float xmin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Definition: IFunction.h:327
Abstract Minimizer class, defining the interface for the various minimizer (like Minuit2,...
Definition: Minimizer.h:78
Interface (abstract class) defining the function to be minimized, which has to be implemented by the ...
Definition: FCNBase.h:47
class holding the full result of the minimization; both internal and external (MnUserParameterState) ...
Minuit2Minimizer class implementing the ROOT::Math::Minimizer interface for Minuit2 minimization algo...
bool ExamineMinimum(const ROOT::Minuit2::FunctionMinimum &min)
examine the minimum result
virtual unsigned int NFree() const
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the to...
Minuit2Minimizer(ROOT::Minuit2::EMinimizerType type=ROOT::Minuit2::kMigrad)
Default constructor.
const ROOT::Minuit2::MnUserParameterState & State()
return the minimizer state (containing values, step size , etc..)
void SetStorageLevel(int level)
set storage level = 1 : store all iteration states (default) = 0 : store only first and last state to...
Minuit2Minimizer & operator=(const Minuit2Minimizer &rhs)
Assignment operator.
virtual bool SetVariableUpperLimit(unsigned int ivar, double upper)
set the upper-limit of an already existing variable
virtual double GlobalCC(unsigned int i) const
get global correlation coefficient for the variable i.
virtual int VariableIndex(const std::string &name) const
get index of variable given a variable given a name return -1 if variable is not found
virtual bool SetVariable(unsigned int ivar, const std::string &name, double val, double step)
set free variable
virtual bool SetFixedVariable(unsigned int, const std::string &, double)
set fixed variable (override if minimizer supports them )
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)
set the function to minimize
virtual const ROOT::Minuit2::FCNBase * GetFCN() const
virtual bool ProvidesError() const
minimizer provides error and error matrix
virtual bool SetLowerLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double lower)
set lower limit variable (override if minimizer supports them )
virtual bool SetLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double, double)
set upper/lower limited variable (override if minimizer supports them )
virtual bool SetVariableLimits(unsigned int ivar, double lower, double upper)
set the limits of an already existing variable
virtual bool SetVariableValues(const double *val)
set the values of all existing variables (array must be dimensioned to the size of the existing param...
virtual int CovMatrixStatus() const
return the status of the covariance matrix status = -1 : not available (inversion failed or Hesse fai...
virtual double MinValue() const
return minimum function value
virtual void Clear()
reset for consecutive minimizations - implement if needed
virtual double CovMatrix(unsigned int i, unsigned int j) const
return covariance matrix elements if the variable is fixed or const the value is zero The ordering of...
virtual ~Minuit2Minimizer()
Destructor (no operations)
virtual bool ReleaseVariable(unsigned int ivar)
release an existing variable
ROOT::Minuit2::ModularFunctionMinimizer * fMinimizer
virtual const double * MinGradient() const
return pointer to gradient values at the minimum
virtual bool Scan(unsigned int i, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0)
scan a parameter i around the minimum.
virtual std::string VariableName(unsigned int ivar) const
get name of variables (override if minimizer support storing of variable names)
virtual unsigned int NDim() const
this is <= Function().NDim() which is the total number of variables (free+ constrained ones)
virtual bool GetCovMatrix(double *cov) const
Fill the passed array with the covariance matrix elements if the variable is fixed or const the value...
virtual bool SetUpperLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double upper)
set upper limit variable (override if minimizer supports them )
virtual bool Minimize()
method to perform the minimization.
void SetTraceObject(MnTraceObject &obj)
set an object to trace operation for each iteration The object muust implement operator() (unsigned i...
virtual bool SetVariableLowerLimit(unsigned int ivar, double lower)
set the lower-limit of an already existing variable
virtual const ROOT::Minuit2::ModularFunctionMinimizer * GetMinimizer() const
virtual const double * X() const
return pointer to X values at the minimum
void SetMinimizerType(ROOT::Minuit2::EMinimizerType type)
virtual void PrintResults()
return reference to the objective function virtual const ROOT::Math::IGenFunction & Function() const;
virtual bool GetHessianMatrix(double *h) const
Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second...
virtual unsigned int NCalls() const
number of function calls to reach the minimum
virtual double Edm() const
return expected distance reached from the minimum
ROOT::Minuit2::MnUserParameterState fState
virtual bool GetMinosError(unsigned int i, double &errLow, double &errUp, int=0)
get the minos error for parameter i, return false if Minos failed A minimizaiton must be performed be...
virtual bool IsFixedVariable(unsigned int ivar) const
query if an existing variable is fixed (i.e.
virtual void SetMinimizer(ROOT::Minuit2::ModularFunctionMinimizer *m)
virtual const double * Errors() const
return errors at the minimum
virtual bool GetVariableSettings(unsigned int ivar, ROOT::Fit::ParameterSettings &varObj) const
get variable settings in a variable object (like ROOT::Fit::ParamsSettings)
ROOT::Minuit2::FunctionMinimum * fMinimum
virtual bool SetVariableValue(unsigned int ivar, double val)
set variable
ROOT::Minuit2::FCNBase * fMinuitFCN
virtual bool Contour(unsigned int i, unsigned int j, unsigned int &npoints, double *xi, double *xj)
find the contour points (xi,xj) of the function for parameter i and j around the minimum The contour ...
virtual double Correlation(unsigned int i, unsigned int j) const
return correlation coefficient between variable i and j.
virtual bool SetVariableStepSize(unsigned int ivar, double step)
set the step size of an already existing variable
virtual bool FixVariable(unsigned int ivar)
fix an existing variable
virtual bool Hesse()
perform a full calculation of the Hessian matrix for error calculation If a valid minimum exists the ...
class which holds the external user and/or internal Minuit representation of the parameters and error...
Base common class providing the API for all the minimizer Various Minimize methods are provided varyi...
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
auto * m
Definition: textangle.C:8