33#ifndef ROOT_TMVA_MethodCuts
34#define ROOT_TMVA_MethodCuts
68 const TString& theOption =
"MC:150:10000:");
#define ClassDef(name, id)
A simple Binary search tree including a volume search method.
Class that contains all the data information.
Interface for a fitter 'target'.
Interface for all concrete MVA method implementations.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular ...
Double_t ComputeEstimator(std::vector< Double_t > &)
returns estimator for "cut fitness" used by GA.
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void ReadWeightsFromStream(std::istream &i)
read the cuts from stream
Double_t GetEfficiency(const TString &, Types::ETreeType, Double_t &)
Overloaded function to create background efficiency (rejection) versus signal efficiency plot (first ...
BinarySearchTree * fBinaryTreeS
Double_t EstimatorFunction(std::vector< Double_t > &)
returns estimator for "cut fitness" used by GA
void SetTestSignalEfficiency(Double_t effS)
std::vector< Int_t > * fRangeSign
void DeclareOptions()
define the options (their key words) that can be set in the option string.
EFitMethodType fFitMethod
const Ranking * CreateRanking()
Double_t GetSignificance(void) const
compute significance of mean difference
void MatchCutsToPars(std::vector< Double_t > &, Double_t *, Double_t *)
translates cuts into parameters
static MethodCuts * DynamicCast(IMethod *method)
void GetHelpMessage() const
get help message text
void Train(void)
training method: here the cuts are optimised for the training sample
Double_t GetRarity(Double_t, Types::ESBType) const
compute rarity:
static const Double_t fgMaxAbsCutVal
std::vector< TH1 * > * fVarHistB
void CreateVariablePDFs(void)
for PDF method: create efficiency reference histograms and PDFs
std::vector< PDF * > * fVarPdfB
std::vector< TH1 * > * fVarHistS
std::vector< Double_t > * fRmsB
std::vector< TH1 * > * fVarHistB_smooth
Double_t GetmuTransform(TTree *)
std::vector< PDF * > * fVarPdfS
void GetEffsfromSelection(Double_t *cutMin, Double_t *cutMax, Double_t &effS, Double_t &effB)
compute signal and background efficiencies from event counting for given cut sample
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
void Init(void)
default initialisation called by all constructors
Double_t GetTrainingEfficiency(const TString &)
Overloaded function to create background efficiency (rejection) versus signal efficiency plot (first ...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Cuts can only handle classification with 2 classes.
void ProcessOptions()
process user options.
void WriteMonitoringHistosToFile(void) const
write histograms and PDFs to file for monitoring purposes
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
void MatchParsToCuts(const std::vector< Double_t > &, Double_t *, Double_t *)
translates parameters into cuts
virtual ~MethodCuts(void)
destructor
Double_t GetSeparation(PDF *=0, PDF *=0) const
compute "separation" defined as
void TestClassification()
nothing to test
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
cut evaluation: returns 1.0 if event passed, 0.0 otherwise
BinarySearchTree * fBinaryTreeB
std::vector< Double_t > * fRmsS
std::vector< Double_t > * fMeanS
std::vector< Double_t > * fMeanB
std::vector< EFitParameters > * fFitParams
Double_t GetSeparation(TH1 *, TH1 *) const
compute "separation" defined as
std::vector< Interval * > fCutRange
std::vector< TH1 * > * fVarHistS_smooth
void MatchParsToCuts(Double_t *, Double_t *, Double_t *)
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file
void GetEffsfromPDFs(Double_t *cutMin, Double_t *cutMax, Double_t &effS, Double_t &effB)
compute signal and background efficiencies from PDFs for given cut sample
Double_t GetCuts(Double_t effS, std::vector< Double_t > &cutMin, std::vector< Double_t > &cutMax) const
retrieve cut values for given signal efficiency
void PrintCuts(Double_t effS) const
print cuts
PDF wrapper for histograms; uses user-defined spline interpolation.
Ranking for variables in method (implementation)
This is the base class for the ROOT Random number generators.
A TTree represents a columnar dataset.
create variable transformations