Logo ROOT   6.18/05
Reference Guide
HybridOriginalDemo.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roostats
3/// \notebook -js
4/// Example on how to use the HybridCalculatorOriginal class
5///
6/// With this example, you should get: CL_sb = 0.130 and CL_b = 0.946
7/// (if data had -2lnQ = -3.0742).
8///
9/// \macro_image
10/// \macro_output
11/// \macro_code
12///
13/// \author Gregory Schott
14
15#include "RooRandom.h"
16#include "RooRealVar.h"
17#include "RooGaussian.h"
18#include "RooPolynomial.h"
19#include "RooArgSet.h"
20#include "RooAddPdf.h"
21#include "RooDataSet.h"
22#include "RooExtendPdf.h"
23#include "RooConstVar.h"
26#include "RooStats/HybridPlot.h"
27
28void HybridOriginalDemo(int ntoys = 1000)
29{
30 using namespace RooFit;
31 using namespace RooStats;
32
33 // set RooFit random seed
35
36 /// build the models for background and signal+background
37 RooRealVar x("x", "", -3, 3);
38 RooArgList observables(x); // variables to be generated
39
40 // gaussian signal
41 RooGaussian sig_pdf("sig_pdf", "", x, RooConst(0.0), RooConst(0.8));
42 RooRealVar sig_yield("sig_yield", "", 20, 0, 300);
43
44 // flat background (extended PDF)
45 RooPolynomial bkg_pdf("bkg_pdf", "", x, RooConst(0));
46 RooRealVar bkg_yield("bkg_yield", "", 40, 0, 300);
47 RooExtendPdf bkg_ext_pdf("bkg_ext_pdf", "", bkg_pdf, bkg_yield);
48
49 // bkg_yield.setConstant(kTRUE);
50 sig_yield.setConstant(kTRUE);
51
52 // total sig+bkg (extended PDF)
53 RooAddPdf tot_pdf("tot_pdf", "", RooArgList(sig_pdf, bkg_pdf), RooArgList(sig_yield, bkg_yield));
54
55 // build the prior PDF on the parameters to be integrated
56 // gaussian contraint on the background yield ( N_B = 40 +/- 10 ie. 25% )
57 RooGaussian bkg_yield_prior("bkg_yield_prior", "", bkg_yield, RooConst(bkg_yield.getVal()), RooConst(10.));
58
59 RooArgSet nuisance_parameters(bkg_yield); // variables to be integrated
60
61 /// generate a data sample
62 RooDataSet *data = tot_pdf.generate(observables, RooFit::Extended());
63
64 // run HybridCalculator on those inputs
65 // use interface from HypoTest calculator by default
66
67 HybridCalculatorOriginal myHybridCalc(*data, tot_pdf, bkg_ext_pdf, &nuisance_parameters, &bkg_yield_prior);
68
69 // here I use the default test statistics: 2*lnQ (optional)
70 myHybridCalc.SetTestStatistic(1);
71 // myHybridCalc.SetTestStatistic(3); // profile likelihood ratio
72
73 myHybridCalc.SetNumberOfToys(ntoys);
74 myHybridCalc.UseNuisance(true);
75
76 // for speed up generation (do binned data)
77 myHybridCalc.SetGenerateBinned(false);
78
79 // calculate by running ntoys for the S+B and B hypothesis and retrieve the result
80 HybridResult *myHybridResult = myHybridCalc.GetHypoTest();
81
82 if (!myHybridResult) {
83 std::cerr << "\nError returned from Hypothesis test" << std::endl;
84 return;
85 }
86
87 /// nice plot of the results
88 HybridPlot *myHybridPlot =
89 myHybridResult->GetPlot("myHybridPlot", "Plot of results with HybridCalculatorOriginal", 100);
90 myHybridPlot->Draw();
91
92 /// recover and display the results
93 double clsb_data = myHybridResult->CLsplusb();
94 double clb_data = myHybridResult->CLb();
95 double cls_data = myHybridResult->CLs();
96 double data_significance = myHybridResult->Significance();
97 double min2lnQ_data = myHybridResult->GetTestStat_data();
98
99 /// compute the mean expected significance from toys
100 double mean_sb_toys_test_stat = myHybridPlot->GetSBmean();
101 myHybridResult->SetDataTestStatistics(mean_sb_toys_test_stat);
102 double toys_significance = myHybridResult->Significance();
103
104 std::cout << "Completed HybridCalculatorOriginal example:\n";
105 std::cout << " - -2lnQ = " << min2lnQ_data << endl;
106 std::cout << " - CL_sb = " << clsb_data << std::endl;
107 std::cout << " - CL_b = " << clb_data << std::endl;
108 std::cout << " - CL_s = " << cls_data << std::endl;
109 std::cout << " - significance of data = " << data_significance << std::endl;
110 std::cout << " - mean significance of toys = " << toys_significance << std::endl;
111}
const Bool_t kTRUE
Definition: RtypesCore.h:87
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooExtendPdf is a wrapper around an existing PDF that adds a parameteric extended likelihood term to ...
Definition: RooExtendPdf.h:22
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooPolynomial implements a polynomial p.d.f of the form.
Definition: RooPolynomial.h:28
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition: RooRandom.cxx:54
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
HybridCalculatorOriginal class.
This class provides the plots for the result of a study performed with the HybridCalculatorOriginal c...
Definition: HybridPlot.h:36
double GetSBmean()
Get SB histo mean.
Definition: HybridPlot.h:76
void Draw(const char *options="")
Draw on current pad.
Definition: HybridPlot.cxx:138
Class encapsulating the result of the HybridCalculatorOriginal.
Definition: HybridResult.h:25
double GetTestStat_data()
Get test statistics value for data.
Definition: HybridResult.h:57
HybridPlot * GetPlot(const char *name, const char *title, int n_bins)
prepare a plot showing a result and return a pointer to a HybridPlot object the needed arguments are:...
void SetDataTestStatistics(double testStat_data_val)
set the value of the test statistics on data
virtual Double_t CLb() const
Convert NullPValue into a "confidence level".
virtual Double_t CLsplusb() const
Convert AlternatePValue into a "confidence level".
virtual Double_t Significance() const
familiar name for the Null p-value in terms of 1-sided Gaussian significance
virtual Double_t CLs() const
is simply (not a method, but a quantity)
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
Definition: TRandom.cxx:597
Double_t x[n]
Definition: legend1.C:17
Template specialisation used in RooAbsArg:
RooCmdArg Extended(Bool_t flag=kTRUE)
RooConstVar & RooConst(Double_t val)
Namespace for the RooStats classes.
Definition: Asimov.h:20