29#ifndef ROOT_Math_GSLMCIntegrator
30#define ROOT_Math_GSLMCIntegrator
54 class GSLMCIntegrationWorkspace;
55 class GSLMonteFunctionWrapper;
56 class GSLRandomEngine;
164 double Integral(
const double*
a,
const double*
b);
185 double Error()
const;
double Integral(const GSLMonteFuncPointer &f, unsigned int dim, double *a, double *b, void *p=0)
evaluate the Integral of a function f over the defined hypercube (a,b)
double Error() const
return the estimate of the absolute Error of the last Integral calculation
GSLMonteFunctionWrapper * fFunction
GSLMCIntegrator(MCIntegration::Type type=MCIntegration::kVEGAS, double absTol=-1, double relTol=-1, unsigned int calls=0)
constructor of GSL MCIntegrator.
const char * GetTypeName() const
return the name
GSLMCIntegrator & operator=(const GSLMCIntegrator &)
double Result() const
return the type of the integration used
void SetOptions(const ROOT::Math::IntegratorMultiDimOptions &opt)
set the integration options
double(* GSLMonteFuncPointer)(double *, size_t, void *)
void SetParameters(const VegasParameters &p)
set default parameters for VEGAS method
void SetGenerator(GSLRandomEngine &r)
set random number generator
int NEval() const
return number of function evaluations in calculating the integral (This is an fixed by the user)
ROOT::Math::IntegratorMultiDimOptions Options() const
get the option used for the integration
ROOT::Math::IOptions * ExtraOptions() const
get the specific options (for Vegas or Miser) in term of string- name
GSLMCIntegrationWorkspace * fWorkspace
void SetMode(MCIntegration::Mode mode)
set integration mode for VEGAS method The possible MODE are : MCIntegration::kIMPORTANCE (default) : ...
void SetTypeName(const char *typeName)
set integration method using a name instead of an enumeration
void SetRelTolerance(double relTolerance)
set the desired relative Error
virtual ~GSLMCIntegrator()
destructor
double Sigma()
set parameters for PLAIN method
MCIntegration::Type GetType() const
return the type (need to be called GetType to avois a conflict with typedef)
double ChiSqr()
returns chi-squared per degree of freedom for the estimate of the integral in the Vegas algorithm
int Status() const
return the Error Status of the last Integral calculation
void SetAbsTolerance(double absTolerance)
set the desired absolute Error
void SetFunction(const IMultiGenFunction &f)
method to set the a generic integration function
void SetType(MCIntegration::Type type)
set integration method
MCIntegration::Type fType
wrapper to a multi-dim function withtout derivatives for Monte Carlo multi-dimensional integration al...
GSLRandomEngine Base class for all GSL random engines, normally user instantiate the derived classes ...
GSLRngWrapper class to wrap gsl_rng structure.
Documentation for the abstract class IBaseFunctionMultiDim.
Generic interface for defining configuration options of a numerical algorithm.
Numerical multi dimensional integration options.
Interface (abstract) class for multi numerical integration It must be implemented by the concrete Int...
Type
enumeration specifying the integration types.
Namespace for new Math classes and functions.
Namespace for new ROOT classes and functions.
structures collecting parameters for MISER multidimensional integration
structures collecting parameters for VEGAS multidimensional integration FOr implementation of default...