'Number Counting Utils' RooStats tutorial
This tutorial shows an example of the RooStats standalone utilities that calculate the p-value or Z value (eg. significance in 1-sided Gaussian standard deviations) for a number counting experiment. This is a hypothesis test between background only and signal-plus-background. The background estimate has uncertainty derived from an auxiliary or sideband measurement.
Documentation for these utilities can be found here: http://root.cern.ch/root/html/RooStats__NumberCountingUtils.html
This problem is often called a proto-type problem for high energy physics. In some references it is referred to as the on/off problem.
The problem is treated in a fully frequentist fashion by interpreting the relative background uncertainty as being due to an auxiliary or sideband observation that is also Poisson distributed with only background. Finally, one considers the test as a ratio of Poisson means where an interval is well known based on the conditioning on the total number of events and the binomial distribution. For more on this, see
␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
expected p-value =0.00094165 Z value (Gaussian sigma) = 3.10804
observed p-value =0.00094165 Z value (Gaussian sigma) = 3.10804
expected p-value =0.00094165 Z value (Gaussian sigma) = 3.10804
observed p-value =0.00094165 Z value (Gaussian sigma) = 3.10804
#include <iostream>
void rs_numbercountingutils()
{
double sExpected = 50;
double bExpected = 100;
double relativeBkgUncert = 0.1;
cout << "expected p-value ="<< pExp << " Z value (Gaussian sigma) = "<< zExp << endl;
double observed = 150;
cout << "observed p-value ="<< pObs << " Z value (Gaussian sigma) = "<< zObs << endl;
double tau = 1;
cout << "expected p-value ="<< pExpWithTau << " Z value (Gaussian sigma) = "<< zExpWithTau << endl;
cout << "observed p-value ="<< pObsWithTau << " Z value (Gaussian sigma) = "<< zObsWithTau << endl;
}
Double_t BinomialWithTauExpZ(Double_t sExp, Double_t bExp, Double_t tau)
Double_t BinomialObsZ(Double_t nObs, Double_t bExp, Double_t fractionalBUncertainty)
Double_t BinomialWithTauObsZ(Double_t nObs, Double_t bExp, Double_t tau)
Double_t BinomialWithTauObsP(Double_t nObs, Double_t bExp, Double_t tau)
Double_t BinomialObsP(Double_t nObs, Double_t, Double_t fractionalBUncertainty)
Double_t BinomialWithTauExpP(Double_t sExp, Double_t bExp, Double_t tau)
Double_t BinomialExpZ(Double_t sExp, Double_t bExp, Double_t fractionalBUncertainty)
Double_t BinomialExpP(Double_t sExp, Double_t bExp, Double_t fractionalBUncertainty)
@(#)root/roostats:$Id$ Author: George Lewis, Kyle Cranmer
- Author
- Kyle Cranmer
Definition in file rs_numbercountingutils.C.