Logo ROOT   6.16/01
Reference Guide
rf607_fitresult.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook
4/// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #607
5///
6/// Demonstration of options of the RooFitResult class
7///
8/// \macro_image
9/// \macro_output
10/// \macro_code
11/// \author 07/2008 - Wouter Verkerke
12
13
14#include "RooRealVar.h"
15#include "RooDataSet.h"
16#include "RooGaussian.h"
17#include "RooConstVar.h"
18#include "RooAddPdf.h"
19#include "RooChebychev.h"
20#include "RooFitResult.h"
21#include "TCanvas.h"
22#include "TAxis.h"
23#include "RooPlot.h"
24#include "TFile.h"
25#include "TStyle.h"
26#include "TH2.h"
27#include "TMatrixDSym.h"
28
29using namespace RooFit ;
30
31
32void rf607_fitresult()
33{
34 // C r e a t e p d f , d a t a
35 // --------------------------------
36
37 // Declare observable x
38 RooRealVar x("x","x",0,10) ;
39
40 // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
41 RooRealVar mean("mean","mean of gaussians",5,-10,10) ;
42 RooRealVar sigma1("sigma1","width of gaussians",0.5,0.1,10) ;
43 RooRealVar sigma2("sigma2","width of gaussians",1,0.1,10) ;
44
45 RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
46 RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
47
48 // Build Chebychev polynomial p.d.f.
49 RooRealVar a0("a0","a0",0.5,0.,1.) ;
50 RooRealVar a1("a1","a1",-0.2) ;
51 RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
52
53 // Sum the signal components into a composite signal p.d.f.
54 RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
55 RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
56
57 // Sum the composite signal and background
58 RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
59 RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
60
61 // Generate 1000 events
62 RooDataSet* data = model.generate(x,1000) ;
63
64
65
66 // F i t p d f t o d a t a , s a v e f i t r e s u l t
67 // -------------------------------------------------------------
68
69 // Perform fit and save result
70 RooFitResult* r = model.fitTo(*data,Save()) ;
71
72
73
74 // P r i n t f i t r e s u l t s
75 // ---------------------------------
76
77 // Summary printing: Basic info plus final values of floating fit parameters
78 r->Print() ;
79
80 // Verbose printing: Basic info, values of constant parameters, initial and
81 // final values of floating parameters, global correlations
82 r->Print("v") ;
83
84
85
86 // V i s u a l i z e c o r r e l a t i o n m a t r i x
87 // -------------------------------------------------------
88
89 // Construct 2D color plot of correlation matrix
90 gStyle->SetOptStat(0) ;
91 TH2* hcorr = r->correlationHist() ;
92
93
94 // Visualize ellipse corresponding to single correlation matrix element
95 RooPlot* frame = new RooPlot(sigma1,sig1frac,0.45,0.60,0.65,0.90) ;
96 frame->SetTitle("Covariance between sigma1 and sig1frac") ;
97 r->plotOn(frame,sigma1,sig1frac,"ME12ABHV") ;
98
99
100
101 // A c c e s s f i t r e s u l t i n f o r m a t i o n
102 // ---------------------------------------------------------
103
104 // Access basic information
105 cout << "EDM = " << r->edm() << endl ;
106 cout << "-log(L) at minimum = " << r->minNll() << endl ;
107
108 // Access list of final fit parameter values
109 cout << "final value of floating parameters" << endl ;
110 r->floatParsFinal().Print("s") ;
111
112 // Access correlation matrix elements
113 cout << "correlation between sig1frac and a0 is " << r->correlation(sig1frac,a0) << endl ;
114 cout << "correlation between bkgfrac and mean is " << r->correlation("bkgfrac","mean") << endl ;
115
116 // Extract covariance and correlation matrix as TMatrixDSym
117 const TMatrixDSym& cor = r->correlationMatrix() ;
118 const TMatrixDSym& cov = r->covarianceMatrix() ;
119
120 // Print correlation, covariance matrix
121 cout << "correlation matrix" << endl ;
122 cor.Print() ;
123 cout << "covariance matrix" << endl ;
124 cov.Print() ;
125
126
127 // P e r s i s t f i t r e s u l t i n r o o t f i l e
128 // -------------------------------------------------------------
129
130 // Open new ROOT file save save result
131 TFile f("rf607_fitresult.root","RECREATE") ;
132 r->Write("rf607") ;
133 f.Close() ;
134
135 // In a clean ROOT session retrieve the persisted fit result as follows:
136 // RooFitResult* r = gDirectory->Get("rf607") ;
137
138
139 TCanvas* c = new TCanvas("rf607_fitresult","rf607_fitresult",800,400) ;
140 c->Divide(2) ;
141 c->cd(1) ; gPad->SetLeftMargin(0.15) ; hcorr->GetYaxis()->SetTitleOffset(1.4) ; hcorr->Draw("colz") ;
142 c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
143
144}
ROOT::R::TRInterface & r
Definition: Object.C:4
#define f(i)
Definition: RSha256.hxx:104
#define c(i)
Definition: RSha256.hxx:101
R__EXTERN TStyle * gStyle
Definition: TStyle.h:406
#define gPad
Definition: TVirtualPad.h:286
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
void SetTitle(const char *name)
Set the title of the RooPlot to 'title'.
Definition: RooPlot.cxx:1104
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
TAxis * GetYaxis()
Definition: TH1.h:317
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
void Print(Option_t *name="") const
Print the matrix as a table of elements.
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
Definition: TObject.cxx:785
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
Definition: TObject.cxx:550
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition: TStyle.cxx:1444
Double_t x[n]
Definition: legend1.C:17
RooCmdArg Save(Bool_t flag=kTRUE)