Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf312_multirangefit.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -nodraw
4/// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #312
5///
6/// Performing fits in multiple (disjoint) ranges in one or more dimensions
7///
8/// \macro_output
9/// \macro_code
10/// \author 07/2008 - Wouter Verkerke
11
12
13#include "RooRealVar.h"
14#include "RooDataSet.h"
15#include "RooGaussian.h"
16#include "RooConstVar.h"
17#include "RooProdPdf.h"
18#include "RooAddPdf.h"
19#include "RooPolynomial.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23#include "RooFitResult.h"
24using namespace RooFit ;
25
26
28{
29
30 // C r e a t e 2 D p d f a n d d a t a
31 // -------------------------------------------
32
33 // Define observables x,y
34 RooRealVar x("x","x",-10,10) ;
35 RooRealVar y("y","y",-10,10) ;
36
37 // Construct the signal pdf gauss(x)*gauss(y)
38 RooRealVar mx("mx","mx",1,-10,10) ;
39 RooRealVar my("my","my",1,-10,10) ;
40
41 RooGaussian gx("gx","gx",x,mx,RooConst(1)) ;
42 RooGaussian gy("gy","gy",y,my,RooConst(1)) ;
43
44 RooProdPdf sig("sig","sig",gx,gy) ;
45
46 // Construct the background pdf (flat in x,y)
47 RooPolynomial px("px","px",x) ;
48 RooPolynomial py("py","py",y) ;
49 RooProdPdf bkg("bkg","bkg",px,py) ;
50
51 // Construct the composite model sig+bkg
52 RooRealVar f("f","f",0.,1.) ;
53 RooAddPdf model("model","model",RooArgList(sig,bkg),f) ;
54
55 // Sample 10000 events in (x,y) from the model
56 RooDataSet* modelData = model.generate(RooArgSet(x,y),10000) ;
57
58
59
60 // D e f i n e s i g n a l a n d s i d e b a n d r e g i o n s
61 // -------------------------------------------------------------------
62
63 // Construct the SideBand1,SideBand2,Signal regions
64 //
65 // |
66 // +-------------+-----------+
67 // | | |
68 // | Side | Sig |
69 // | Band1 | nal |
70 // | | |
71 // --+-------------+-----------+--
72 // | |
73 // | Side |
74 // | Band2 |
75 // | |
76 // +-------------+-----------+
77 // |
78
79 x.setRange("SB1",-10,+10) ;
80 y.setRange("SB1",-10,0) ;
81
82 x.setRange("SB2",-10,0) ;
83 y.setRange("SB2",0,+10) ;
84
85 x.setRange("SIG",0,+10) ;
86 y.setRange("SIG",0,+10) ;
87
88 x.setRange("FULL",-10,+10) ;
89 y.setRange("FULL",-10,+10) ;
90
91
92 // P e r f o r m f i t s i n i n d i v i d u a l s i d e b a n d r e g i o n s
93 // -------------------------------------------------------------------------------------
94
95 // Perform fit in SideBand1 region (RooAddPdf coefficients will be interpreted in full range)
96 RooFitResult* r_sb1 = model.fitTo(*modelData,Range("SB1"),Save()) ;
97
98 // Perform fit in SideBand2 region (RooAddPdf coefficients will be interpreted in full range)
99 RooFitResult* r_sb2 = model.fitTo(*modelData,Range("SB2"),Save()) ;
100
101
102
103 // P e r f o r m f i t s i n j o i n t s i d e b a n d r e g i o n s
104 // -----------------------------------------------------------------------------
105
106 // Now perform fit to joint 'L-shaped' sideband region 'SB1|SB2'
107 // (RooAddPdf coefficients will be interpreted in full range)
108 RooFitResult* r_sb12 = model.fitTo(*modelData,Range("SB1,SB2"),Save()) ;
109
110
111 // Print results for comparison
112 r_sb1->Print() ;
113 r_sb2->Print() ;
114 r_sb12->Print() ;
115
116
117}
#define f(i)
Definition: RSha256.hxx:104
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooFitResult.h:66
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooPolynomial implements a polynomial p.d.f of the form.
Definition: RooPolynomial.h:28
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Definition: RooProdPdf.h:31
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
RooConstVar & RooConst(Double_t val)
RooCmdArg Save(Bool_t flag=kTRUE)
Ta Range(0, 0, 1, 1)