Logo ROOT   6.16/01
Reference Guide
rf111_derivatives.C File Reference

Detailed Description

View in nbviewer Open in SWAN 'BASIC FUNCTIONALITY' RooFit tutorial macro #111

Numerical 1st,2nd and 3rd order derivatives w.r.t. observables and parameters

pdf = gauss(x,m,s)

␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gauss_Int[sigma]) using numeric integrator RooIntegrator1D to calculate Int(sigma)
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
using namespace RooFit ;
{
// S e t u p m o d e l
// ---------------------
// Declare variables x,mean,sigma with associated name, title, initial value and allowed range
RooRealVar x("x","x",-10,10) ;
RooRealVar mean("mean","mean of gaussian",1,-10,10) ;
RooRealVar sigma("sigma","width of gaussian",1,0.1,10) ;
// Build gaussian p.d.f in terms of x,mean and sigma
RooGaussian gauss("gauss","gaussian PDF",x,mean,sigma) ;
// C r e a t e a n d p l o t d e r i v a t i v e s w . r . t . x
// ----------------------------------------------------------------------
// Derivative of normalized gauss(x) w.r.t. observable x
RooAbsReal* dgdx = gauss.derivative(x,1) ;
// Second and third derivative of normalized gauss(x) w.r.t. observable x
RooAbsReal* d2gdx2 = gauss.derivative(x,2) ;
RooAbsReal* d3gdx3 = gauss.derivative(x,3) ;
// Construct plot frame in 'x'
RooPlot* xframe = x.frame(Title("d(Gauss)/dx")) ;
// Plot gauss in frame (i.e. in x)
gauss.plotOn(xframe) ;
// Plot derivatives in same frame
dgdx->plotOn(xframe,LineColor(kMagenta)) ;
d2gdx2->plotOn(xframe,LineColor(kRed)) ;
d3gdx3->plotOn(xframe,LineColor(kOrange)) ;
// C r e a t e a n d p l o t d e r i v a t i v e s w . r . t . s i g m a
// ------------------------------------------------------------------------------
// Derivative of normalized gauss(x) w.r.t. parameter sigma
RooAbsReal* dgds = gauss.derivative(sigma,1) ;
// Second and third derivative of normalized gauss(x) w.r.t. parameter sigma
RooAbsReal* d2gds2 = gauss.derivative(sigma,2) ;
RooAbsReal* d3gds3 = gauss.derivative(sigma,3) ;
// Construct plot frame in 'sigma'
RooPlot* sframe = sigma.frame(Title("d(Gauss)/d(sigma)"),Range(0.,2.)) ;
// Plot gauss in frame (i.e. in x)
gauss.plotOn(sframe) ;
// Plot derivatives in same frame
dgds->plotOn(sframe,LineColor(kMagenta)) ;
d2gds2->plotOn(sframe,LineColor(kRed)) ;
d3gds3->plotOn(sframe,LineColor(kOrange)) ;
// Draw all frames on a canvas
TCanvas* c = new TCanvas("rf111_derivatives","rf111_derivatives",800,400) ;
c->Divide(2) ;
c->cd(1) ; gPad->SetLeftMargin(0.15) ; xframe->GetYaxis()->SetTitleOffset(1.6) ; xframe->Draw() ;
c->cd(2) ; gPad->SetLeftMargin(0.15) ; sframe->GetYaxis()->SetTitleOffset(1.6) ; sframe->Draw() ;
}
#define c(i)
Definition: RSha256.hxx:101
@ kRed
Definition: Rtypes.h:63
@ kOrange
Definition: Rtypes.h:64
@ kMagenta
Definition: Rtypes.h:63
#define gPad
Definition: TVirtualPad.h:286
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg(), const RooCmdArg &arg10=RooCmdArg()) const
Plot (project) PDF on specified frame.
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
const Double_t sigma
Double_t x[n]
Definition: legend1.C:17
RooCmdArg LineColor(Color_t color)
static constexpr double gauss
const char * Title
Definition: TXMLSetup.cxx:67
Ta Range(0, 0, 1, 1)
Author
07/2008 - Wouter Verkerke

Definition in file rf111_derivatives.C.