This is intended as a simple foundation to build on. It assumes you are familiar with TMVA already. As such concepts like the Factory, the DataLoader and others are not explained. For descriptions and tutuorials use the TMVA User's Guide (https://root.cern.ch/root-user-guides-and-manuals under TMVA) or the more detailed examples provided with TMVA e.g. TMVAClassification.C.
Sets up a minimal binary classification example with two slighly overlapping 2-D gaussian distributions and trains a BDT classifier to discriminate the data.
<HEADER> DataSetInfo : [dataset] : Added class "Signal"
: Add Tree of type Signal with 1000 events
<HEADER> DataSetInfo : [dataset] : Added class "Background"
: Add Tree of type Background with 1000 events
<HEADER> Factory : Booking method: BDT
:
<HEADER> DataSetFactory : [dataset] : Number of events in input trees
:
:
: Dataset[dataset] : Weight renormalisation mode: "EqualNumEvents": renormalises all event classes ...
: Dataset[dataset] : such that the effective (weighted) number of events in each class is the same
: Dataset[dataset] : (and equals the number of events (entries) given for class=0 )
: Dataset[dataset] : ... i.e. such that Sum[i=1..N_j]{w_i} = N_classA, j=classA, classB, ...
: Dataset[dataset] : ... (note that N_j is the sum of TRAINING events
: Dataset[dataset] : ..... Testing events are not renormalised nor included in the renormalisation factor!)
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 500
: Signal -- testing events : 500
: Signal -- training and testing events: 1000
: Background -- training events : 500
: Background -- testing events : 500
: Background -- training and testing events: 1000
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ------------------------
: x y
: x: +1.000 +0.030
: y: +0.030 +1.000
: ------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ------------------------
: x y
: x: +1.000 -0.022
: y: -0.022 +1.000
: ------------------------
<HEADER> DataSetFactory : [dataset] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [dataset] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'x' <---> Output : variable 'x'
: Input : variable 'y' <---> Output : variable 'y'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: x: 1.0229 0.57835 [ 0.00044777 1.9988 ]
: y: 1.4942 0.76640 [ 0.014777 2.9933 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: --------------------------
: Rank : Variable : Separation
: --------------------------
: 1 : y : 5.413e-01
: 2 : x : 4.319e-02
: --------------------------
<HEADER> Factory : Train method: BDT for Classification
:
<HEADER> BDT : #events: (reweighted) sig: 500 bkg: 500
: #events: (unweighted) sig: 500 bkg: 500
: Training 800 Decision Trees ... patience please
: Elapsed time for training with 1000 events: 0.666 sec
<HEADER> BDT : [dataset] : Evaluation of BDT on training sample (1000 events)
: Elapsed time for evaluation of 1000 events: 0.072 sec
: Creating xml weight file: dataset/weights/_BDT.weights.xml
: Creating standalone class: dataset/weights/_BDT.class.C
: out.root:/dataset/Method_BDT/BDT
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDT : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Variable Importance
: -----------------------------------
: 1 : y : 5.011e-01
: 2 : x : 4.989e-01
: -----------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: dataset/weights/_BDT.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDT for Classification performance
:
<HEADER> BDT : [dataset] : Evaluation of BDT on testing sample (1000 events)
: Elapsed time for evaluation of 1000 events: 0.0572 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDT
:
<HEADER> BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDT : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: x: 1.0136 0.57754 [ 0.0011208 1.9999 ]
: y: 1.4938 0.75135 [ 0.0054384 2.9981 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.870
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.495 (0.675) 0.622 (0.754) 0.794 (0.908)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:dataset : Created tree 'TestTree' with 1000 events
:
<HEADER> Dataset:dataset : Created tree 'TrainTree' with 1000 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html