Logo ROOT   6.16/01
Reference Guide
StandardHistFactoryPlotsWithCategories.C File Reference

Detailed Description

View in nbviewer Open in SWAN StandardHistFactoryPlotsWithCategories

This is a standard demo that can be used with any ROOT file prepared in the standard way. You specify:

With default parameters the macro will attempt to run the standard hist2workspace example and read the ROOT file that it produces.

The macro will scan through all the categories in a simPdf find the corresponding observable. For each category, it will loop through each of the nuisance parameters and plot

You can specify how many sigma to vary by changing nSigmaToVary. You can also change the signal rate by changing muVal.

The script produces a lot plots, you can merge them by doing:

gs -q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=merged.pdf `ls *pdf`
float * q
Definition: THbookFile.cxx:87
␛[1mRooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby␛[0m
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
1) 0x55d0be513650 RooRealVar:: alpha_syst2 = 0 L(-5 - 5) "alpha_syst2"
2) 0x55d0be51b710 RooRealVar:: alpha_syst3 = 0 L(-5 - 5) "alpha_syst3"
3) 0x55d0be4c21d0 RooRealVar:: gamma_stat_channel1_bin_0 = 1 L(0 - 1.25) "gamma_stat_channel1_bin_0"
4) 0x55d0be4dc140 RooRealVar:: gamma_stat_channel1_bin_1 = 1 L(0 - 1.5) "gamma_stat_channel1_bin_1"
check expectedData by category
Is a simultaneous PDF
on type channel1
channelCat==channelCat::channel1
channel1 channel1
[#1] INFO:Plotting -- RooTreeData::plotOn: plotting 234 events out of 234 total events
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
channelCat==channelCat::channel1
channel1 channel1
[#1] INFO:Plotting -- RooTreeData::plotOn: plotting 234 events out of 234 total events
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
channelCat==channelCat::channel1
channel1 channel1
[#1] INFO:Plotting -- RooTreeData::plotOn: plotting 234 events out of 234 total events
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
channelCat==channelCat::channel1
channel1 channel1
[#1] INFO:Plotting -- RooTreeData::plotOn: plotting 234 events out of 234 total events
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#0] ERROR:Eval -- RooAbsReal::logEvalError(channel1_model) evaluation error,
origin : RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
message : p.d.f normalization integral is zero or negative
server values: !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.5 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.5 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=2 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=2 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.25 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.5 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.75 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=2 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
[#0] ERROR:Eval -- RooAbsReal::logEvalError(channel1_model) evaluation error,
origin : RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
message : p.d.f normalization integral is zero or negative
server values: !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.5 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.5 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=2 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=2 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.25 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.5 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=1.75 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
[#0] WARNING:Plotting -- At observable [x]=2 RooRealSumPdf::channel1_model[ binWidth_obs_x_channel1_0 * L_x_signal_channel1_overallSyst_x_Exp + binWidth_obs_x_channel1_1 * L_x_background1_channel1_overallSyst_x_StatUncert + binWidth_obs_x_channel1_2 * L_x_background2_channel1_overallSyst_x_StatUncert ]
p.d.f normalization integral is zero or negative @ !funcList=(L_x_signal_channel1_overallSyst_x_Exp = 0,L_x_background1_channel1_overallSyst_x_StatUncert = 0,L_x_background2_channel1_overallSyst_x_StatUncert = 0), !coefList=(binWidth_obs_x_channel1_0 = 2,binWidth_obs_x_channel1_1 = 2,binWidth_obs_x_channel1_2 = 2)
#include "TFile.h"
#include "TROOT.h"
#include "TCanvas.h"
#include "TList.h"
#include "TMath.h"
#include "TSystem.h"
#include "RooWorkspace.h"
#include "RooAbsData.h"
#include "RooRealVar.h"
#include "RooPlot.h"
#include "RooCategory.h"
using namespace RooFit;
using namespace RooStats;
using namespace std;
void StandardHistFactoryPlotsWithCategories(const char* infile = "",
const char* workspaceName = "combined",
const char* modelConfigName = "ModelConfig",
const char* dataName = "obsData"){
double nSigmaToVary=5.;
double muVal=0;
bool doFit=false;
// -------------------------------------------------------
// First part is just to access a user-defined file
// or create the standard example file if it doesn't exist
const char* filename = "";
if (!strcmp(infile,"")) {
filename = "results/example_combined_GaussExample_model.root";
bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
// if file does not exists generate with histfactory
if (!fileExist) {
#ifdef _WIN32
cout << "HistFactory file cannot be generated on Windows - exit" << endl;
return;
#endif
// Normally this would be run on the command line
cout <<"will run standard hist2workspace example"<<endl;
gROOT->ProcessLine(".! prepareHistFactory .");
gROOT->ProcessLine(".! hist2workspace config/example.xml");
cout <<"\n\n---------------------"<<endl;
cout <<"Done creating example input"<<endl;
cout <<"---------------------\n\n"<<endl;
}
}
else
filename = infile;
// Try to open the file
TFile *file = TFile::Open(filename);
// if input file was specified byt not found, quit
if(!file ){
cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
return;
}
// -------------------------------------------------------
// Tutorial starts here
// -------------------------------------------------------
// get the workspace out of the file
RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
if(!w){
cout <<"workspace not found" << endl;
return;
}
// get the modelConfig out of the file
ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);
// get the modelConfig out of the file
RooAbsData* data = w->data(dataName);
// make sure ingredients are found
if(!data || !mc){
w->Print();
cout << "data or ModelConfig was not found" <<endl;
return;
}
// -------------------------------------------------------
// now use the profile inspector
RooRealVar* obs = (RooRealVar*)mc->GetObservables()->first();
TList* list = new TList();
RooRealVar * firstPOI = dynamic_cast<RooRealVar*>(mc->GetParametersOfInterest()->first());
firstPOI->setVal(muVal);
// firstPOI->setConstant();
if(doFit){
mc->GetPdf()->fitTo(*data);
}
// -------------------------------------------------------
mc->GetNuisanceParameters()->Print("v");
int nPlotsMax = 1000;
cout <<" check expectedData by category"<<endl;
RooDataSet* simData=NULL;
RooSimultaneous* simPdf = NULL;
if(strcmp(mc->GetPdf()->ClassName(),"RooSimultaneous")==0){
cout <<"Is a simultaneous PDF"<<endl;
simPdf = (RooSimultaneous *)(mc->GetPdf());
} else {
cout <<"Is not a simultaneous PDF"<<endl;
}
if(doFit) {
RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
TIterator* iter = channelCat->typeIterator() ;
RooCatType* tt = NULL;
tt=(RooCatType*) iter->Next();
RooAbsPdf* pdftmp = ((RooSimultaneous*)mc->GetPdf())->getPdf(tt->GetName()) ;
RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
obs = ((RooRealVar*)obstmp->first());
RooPlot* frame = obs->frame();
cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));
Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;
pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;
frame->Draw();
cout <<"expected events = " << mc->GetPdf()->expectedEvents(*data->get()) <<endl;
return;
}
int nPlots=0;
if(!simPdf){
TIterator* it = mc->GetNuisanceParameters()->createIterator();
RooRealVar* var = NULL;
while( (var = (RooRealVar*) it->Next()) != NULL){
RooPlot* frame = obs->frame();
frame->SetYTitle(var->GetName());
data->plotOn(frame,MarkerSize(1));
var->setVal(0);
mc->GetPdf()->plotOn(frame,LineWidth(1.));
var->setVal(1);
mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(1));
var->setVal(-1);
mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(1));
list->Add(frame);
var->setVal(0);
}
} else {
RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
// TIterator* iter = simPdf->indexCat().typeIterator() ;
TIterator* iter = channelCat->typeIterator() ;
RooCatType* tt = NULL;
while(nPlots<nPlotsMax && (tt=(RooCatType*) iter->Next())) {
cout << "on type " << tt->GetName() << " " << endl;
// Get pdf associated with state from simpdf
RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;
// Generate observables defined by the pdf associated with this state
RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
// obstmp->Print();
obs = ((RooRealVar*)obstmp->first());
TIterator* it = mc->GetNuisanceParameters()->createIterator();
RooRealVar* var = NULL;
while(nPlots<nPlotsMax && (var = (RooRealVar*) it->Next())){
TCanvas* c2 = new TCanvas("c2");
RooPlot* frame = obs->frame();
frame->SetName(Form("frame%d",nPlots));
frame->SetYTitle(var->GetName());
cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));
Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal());
var->Print();
} else{
var->setVal(0);
}
// w->allVars().Print("v");
// mc->GetNuisanceParameters()->Print("v");
// pdftmp->plotOn(frame,LineWidth(2.));
// mc->GetPdf()->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
//pdftmp->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
normCount = pdftmp->expectedEvents(*obs);
pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal()+0.05);
var->Print();
} else{
var->setVal(nSigmaToVary);
}
// pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2));
// mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
//pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
normCount = pdftmp->expectedEvents(*obs);
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal()-0.05);
var->Print();
} else{
var->setVal(-nSigmaToVary);
}
// pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2));
// mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
//pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
normCount = pdftmp->expectedEvents(*obs);
// set them back to normal
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal());
var->Print();
} else{
var->setVal(0);
}
list->Add(frame);
// quit making plots
++nPlots;
frame->Draw();
c2->SaveAs(Form("%s_%s_%s.pdf",tt->GetName(),obs->GetName(),var->GetName()));
delete c2;
}
}
}
// -------------------------------------------------------
// now make plots
TCanvas* c1 = new TCanvas("c1","ProfileInspectorDemo",800,200);
if(list->GetSize()>4){
double n = list->GetSize();
int nx = (int)sqrt(n) ;
int ny = TMath::CeilNint(n/nx);
c1->Divide(ny,nx);
} else
c1->Divide(list->GetSize());
for(int i=0; i<list->GetSize(); ++i){
c1->cd(i+1);
list->At(i)->Draw();
}
}
double Double_t
Definition: RtypesCore.h:55
@ kRed
Definition: Rtypes.h:63
@ kGreen
Definition: Rtypes.h:63
@ kDashed
Definition: TAttLine.h:48
double sqrt(double)
#define gROOT
Definition: TROOT.h:410
char * Form(const char *fmt,...)
R__EXTERN TSystem * gSystem
Definition: TSystem.h:540
RooArgSet * getObservables(const RooArgSet &set, Bool_t valueOnly=kTRUE) const
Definition: RooAbsArg.h:194
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsArg.h:227
TIterator * typeIterator() const
Return iterator over all defined states.
RooAbsArg * first() const
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
virtual Double_t expectedEvents(const RooArgSet *nset) const
Return expected number of events from this p.d.f for use in extended likelihood calculations.
Definition: RooAbsPdf.cxx:2855
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none(), const RooCmdArg &arg9=RooCmdArg::none(), const RooCmdArg &arg10=RooCmdArg::none()) const
Helper calling plotOn(RooPlot*, RooLinkedList&) const.
Definition: RooAbsPdf.h:119
RooPlot * frame(const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Create a new RooPlot on the heap with a drawing frame initialized for this object,...
Double_t getVal(const RooArgSet *set=0) const
Evaluate object. Returns either cached value or triggers a recalculation.
Definition: RooAbsReal.h:64
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooCatType is an auxilary class for RooAbsCategory and defines a a single category state.
Definition: RooCatType.h:22
RooCategory represents a fundamental (non-derived) discrete value object.
Definition: RooCategory.h:24
virtual const char * getLabel() const
Return label string of current state.
Definition: RooCategory.h:39
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
void SetName(const char *name)
Set the name of the RooPlot to 'name'.
Definition: RooPlot.cxx:1082
void SetYTitle(const char *title)
Definition: RooPlot.cxx:1160
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void setVal(Double_t value)
Set value of variable to 'value'.
Definition: RooRealVar.cxx:204
RooSimultaneous facilitates simultaneous fitting of multiple PDFs to subsets of a given dataset.
const RooAbsCategoryLValue & indexCat() const
RooAbsPdf * getPdf(const char *catName) const
Return the p.d.f associated with the given index category name.
The RooWorkspace is a persistable container for RooFit projects.
Definition: RooWorkspace.h:43
RooAbsData * data(const char *name) const
Retrieve dataset (binned or unbinned) with given name. A null pointer is returned if not found.
void Print(Option_t *opts=0) const
Print contents of the workspace.
RooRealVar * var(const char *name) const
Retrieve real-valued variable (RooRealVar) with given name. A null pointer is returned if not found.
TObject * obj(const char *name) const
Return any type of object (RooAbsArg, RooAbsData or generic object) with given name)
The Canvas class.
Definition: TCanvas.h:31
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Definition: TCollection.h:182
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:48
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseGeneralPurpose, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3975
Iterator abstract base class.
Definition: TIterator.h:30
virtual TObject * Next()=0
A doubly linked list.
Definition: TList.h:44
virtual void Add(TObject *obj)
Definition: TList.h:87
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
Definition: TList.cxx:354
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
Definition: TObject.cxx:195
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1286
return c1
Definition: legend1.C:41
const Int_t n
Definition: legend1.C:16
return c2
Definition: legend2.C:14
RooCmdArg LineWidth(Width_t width)
RooCmdArg MarkerSize(Size_t size)
RooCmdArg Cut(const char *cutSpec)
RooCmdArg DataError(Int_t)
RooCmdArg LineColor(Color_t color)
RooCmdArg Normalization(Double_t scaleFactor)
RooCmdArg LineStyle(Style_t style)
@(#)root/roostats:$Id$ Author: George Lewis, Kyle Cranmer
Definition: Asimov.h:20
Int_t CeilNint(Double_t x)
Definition: TMath.h:687
Definition: file.py:1
STL namespace.
auto * tt
Definition: textangle.C:16
Author
Kyle Cranmer

Definition in file StandardHistFactoryPlotsWithCategories.C.