Logo ROOT   6.16/01
Reference Guide
RooBernstein.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitModels *
4 * @(#)root/roofit:$Id$
5 * Authors: *
6 * Kyle Cranmer *
7 * *
8 *****************************************************************************/
9
10/** \class RooBernstein
11 \ingroup Roofit
12
13Bernstein basis polynomials are positive-definite in the range [0,1].
14In this implementation, we extend [0,1] to be the range of the parameter.
15There are n+1 Bernstein basis polynomials of degree n.
16Thus, by providing N coefficients that are positive-definite, there
17is a natural way to have well behaved polynomial PDFs.
18For any n, the n+1 basis polynomials 'form a partition of unity', eg.
19 they sum to one for all values of x. See
20http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
21**/
22
23#include "RooFit.h"
24
25#include "Riostream.h"
26#include "Riostream.h"
27#include <math.h>
28#include "TMath.h"
29#include "RooBernstein.h"
30#include "RooAbsReal.h"
31#include "RooRealVar.h"
32#include "RooArgList.h"
33
34#include "TError.h"
35
36using namespace std;
37
39
40////////////////////////////////////////////////////////////////////////////////
41
43{
44}
45
46////////////////////////////////////////////////////////////////////////////////
47/// Constructor
48
49RooBernstein::RooBernstein(const char* name, const char* title,
50 RooAbsReal& x, const RooArgList& coefList):
51 RooAbsPdf(name, title),
52 _x("x", "Dependent", this, x),
53 _coefList("coefficients","List of coefficients",this)
54{
55 TIterator* coefIter = coefList.createIterator() ;
56 RooAbsArg* coef ;
57 while((coef = (RooAbsArg*)coefIter->Next())) {
58 if (!dynamic_cast<RooAbsReal*>(coef)) {
59 cout << "RooBernstein::ctor(" << GetName() << ") ERROR: coefficient " << coef->GetName()
60 << " is not of type RooAbsReal" << endl ;
61 R__ASSERT(0) ;
62 }
63 _coefList.add(*coef) ;
64 }
65 delete coefIter ;
66}
67
68////////////////////////////////////////////////////////////////////////////////
69
70RooBernstein::RooBernstein(const RooBernstein& other, const char* name) :
71 RooAbsPdf(other, name),
72 _x("x", this, other._x),
73 _coefList("coefList",this,other._coefList)
74{
75}
76
77////////////////////////////////////////////////////////////////////////////////
78
80{
81 Double_t xmin = _x.min();
82 Double_t x = (_x - xmin) / (_x.max() - xmin); // rescale to [0,1]
83 Int_t degree = _coefList.getSize() - 1; // n+1 polys of degree n
85
86 if(degree == 0) {
87
88 return ((RooAbsReal *)iter.next())->getVal();
89
90 } else if(degree == 1) {
91
92 Double_t a0 = ((RooAbsReal *)iter.next())->getVal(); // c0
93 Double_t a1 = ((RooAbsReal *)iter.next())->getVal() - a0; // c1 - c0
94 return a1 * x + a0;
95
96 } else if(degree == 2) {
97
98 Double_t a0 = ((RooAbsReal *)iter.next())->getVal(); // c0
99 Double_t a1 = 2 * (((RooAbsReal *)iter.next())->getVal() - a0); // 2 * (c1 - c0)
100 Double_t a2 = ((RooAbsReal *)iter.next())->getVal() - a1 - a0; // c0 - 2 * c1 + c2
101 return (a2 * x + a1) * x + a0;
102
103 } else if(degree > 2) {
104
105 Double_t t = x;
106 Double_t s = 1 - x;
107
108 Double_t result = ((RooAbsReal *)iter.next())->getVal() * s;
109 for(Int_t i = 1; i < degree; i++) {
110 result = (result + t * TMath::Binomial(degree, i) * ((RooAbsReal *)iter.next())->getVal()) * s;
111 t *= x;
112 }
113 result += t * ((RooAbsReal *)iter.next())->getVal();
114
115 return result;
116 }
117
118 // in case list of arguments passed is empty
119 return TMath::SignalingNaN();
120}
121
122////////////////////////////////////////////////////////////////////////////////
123/// No analytical calculation available (yet) of integrals over subranges
124
125Int_t RooBernstein::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* rangeName) const
126{
127 if (rangeName && strlen(rangeName)) {
128 return 0 ;
129 }
130
131 if (matchArgs(allVars, analVars, _x)) return 1;
132 return 0;
133}
134
135////////////////////////////////////////////////////////////////////////////////
136
137Double_t RooBernstein::analyticalIntegral(Int_t code, const char* rangeName) const
138{
139 R__ASSERT(code==1) ;
140 Double_t xmin = _x.min(rangeName); Double_t xmax = _x.max(rangeName);
141 Int_t degree= _coefList.getSize()-1; // n+1 polys of degree n
142 Double_t norm(0) ;
143
145 Double_t temp=0;
146 for (int i=0; i<=degree; ++i){
147 // for each of the i Bernstein basis polynomials
148 // represent it in the 'power basis' (the naive polynomial basis)
149 // where the integral is straight forward.
150 temp = 0;
151 for (int j=i; j<=degree; ++j){ // power basisŧ
152 temp += pow(-1.,j-i) * TMath::Binomial(degree, j) * TMath::Binomial(j,i) / (j+1);
153 }
154 temp *= ((RooAbsReal*)iter.next())->getVal(); // include coeff
155 norm += temp; // add this basis's contribution to total
156 }
157
158 norm *= xmax-xmin;
159 return norm;
160}
int Int_t
Definition: RtypesCore.h:41
double Double_t
Definition: RtypesCore.h:55
#define ClassImp(name)
Definition: Rtypes.h:363
#define R__ASSERT(e)
Definition: TError.h:96
float xmin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
double pow(double, double)
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
Definition: RooAbsArg.h:66
Int_t getSize() const
RooFIter fwdIterator() const
TIterator * createIterator(Bool_t dir=kIterForward) const
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
Double_t getVal(const RooArgSet *set=0) const
Evaluate object. Returns either cached value or triggers a recalculation.
Definition: RooAbsReal.h:64
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Bernstein basis polynomials are positive-definite in the range [0,1].
Definition: RooBernstein.h:23
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
No analytical calculation available (yet) of integrals over subranges.
RooRealProxy _x
Definition: RooBernstein.h:39
Double_t evaluate() const
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes.
RooListProxy _coefList
Definition: RooBernstein.h:40
RooAbsArg * next()
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Reimplementation of standard RooArgList::add()
Double_t min(const char *rname=0) const
Definition: RooRealProxy.h:56
Double_t max(const char *rname=0) const
Definition: RooRealProxy.h:57
Iterator abstract base class.
Definition: TIterator.h:30
virtual TObject * Next()=0
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Double_t x[n]
Definition: legend1.C:17
static constexpr double s
static constexpr double degree
Double_t Binomial(Int_t n, Int_t k)
Calculate the binomial coefficient n over k.
Definition: TMath.cxx:2090
Double_t SignalingNaN()
Returns a signaling NaN as defined by IEEE 754](http://en.wikipedia.org/wiki/NaN#Signaling_NaN)
Definition: TMath.h:896
STL namespace.