23RMethodBase::RMethodBase(
const TString &jobName,
25 const TString &methodTitle,
53 std::vector<std::vector<Float_t> > fArrayTrain(nvar);
58 for (
UInt_t j = 0; j < ntrains; j++) {
68 for (
UInt_t i = 0; i < nvar; i++) {
69 fArrayTrain[i].push_back(ev->
GetValue(i));
73 for (
UInt_t i = 0; i < nvar; i++) {
84 std::vector<std::vector<Float_t> > fArrayTest(nvar);
86 std::vector<std::vector<Float_t> > fArraySpectators(nvar);
89 for (
UInt_t j = 0; j < ntests; j++) {
98 for (
UInt_t i = 0; i < nvar; i++) {
99 fArrayTest[i].push_back(ev->
GetValue(i));
101 for (
UInt_t i = 0; i < nspectators; i++) {
105 for (
UInt_t i = 0; i < nvar; i++) {
108 for (
UInt_t i = 0; i < nspectators; i++) {
ROOT R was implemented using the R Project library and the modules Rcpp and RInside
Class that contains all the data information.
UInt_t GetNVariables() const
UInt_t GetNSpectators(bool all=kTRUE) const
std::vector< TString > GetListOfVariables() const
returns list of variables
VariableInfo & GetSpectatorInfo(Int_t i)
Long64_t GetNTestEvents() const
const Event * GetEvent() const
Long64_t GetNTrainingEvents() const
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not.
Float_t GetSpectator(UInt_t ivar) const
return spectator content
Virtual base Class for all MVA method.
DataSetInfo & DataInfo() const
std::vector< std::string > fFactorTrain
ROOT::R::TRDataFrame fDfTrain
RMethodBase(const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", ROOT::R::TRInterface &_r=ROOT::R::TRInterface::Instance())
ROOT::R::TRDataFrame fDfTest
std::vector< std::string > fFactorTest
ROOT::R::TRDataFrame fDfSpectators
const TString & GetLabel() const
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
Abstract ClassifierFactory template that handles arbitrary types.