45     fConvValue( FLT_MAX ),
 
   47     fBestResult( FLT_MAX ),
 
   48     fLastResult( FLT_MAX )
 
   68   if( fSteps < 0 || fImprovement < 0 ) 
return kFALSE;
 
   71      fConvValue = fCurrentValue;
 
   74   if( withinConvergenceBand )
 
   75      improvement = 
TMath::Abs(fCurrentValue - fConvValue);
 
   77      improvement = fConvValue - fCurrentValue;
 
   78   if ( improvement <= fImprovement || fSteps<0) {
 
   82      fConvValue = fCurrentValue;
 
   84   if (fCounter < fSteps) 
return kFALSE;
 
   93   if( fCounter > fMaxCounter )
 
   94      fMaxCounter = fCounter;
 
  115   if ( fBestResult > fLastResult || fSuccessList.size() <=0 ) {
 
  116      fLastResult = fBestResult;
 
  117      fSuccessList.push_front( 1 ); 
 
  119      fSuccessList.push_front( 0 ); 
 
  121   while( ofSteps <= fSuccessList.size() ) 
 
  122      fSuccessList.erase( fSuccessList.begin() );
 
  125   std::deque<Short_t>::iterator vec = fSuccessList.begin();
 
  126   for (; vec != fSuccessList.end() ; ++vec) {
 
~ConvergenceTest()
destructor
Bool_t HasConverged(Bool_t withinConvergenceBand=kFALSE)
gives back true if the last "steps" steps have lead to an improvement of the "fitness" of the "indivi...
Float_t Progress()
returns a float from 0 (just started) to 1 (finished)
Float_t SpeedControl(UInt_t ofSteps)
this function provides the ability to change the learning rate according to the success of the last g...
ConvergenceTest()
constructor
static long int sum(long int i)