ROOT 6.14/05 Reference Guide |
Definition at line 43 of file ConvLayer.h.
Public Types | |
using | Matrix_t = typename Architecture_t::Matrix_t |
using | Scalar_t = typename Architecture_t::Scalar_t |
Public Member Functions | |
TConvLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init, size_t FilterDepth, size_t FilterHeight, size_t FilterWidth, size_t StrideRows, size_t StrideCols, size_t PaddingHeight, size_t PaddingWidth, Scalar_t DropoutProbability, EActivationFunction f, ERegularization Reg, Scalar_t WeightDecay) | |
Constructor. More... | |
TConvLayer (TConvLayer< Architecture_t > *layer) | |
Copy the conv layer provided as a pointer. More... | |
TConvLayer (const TConvLayer &) | |
Copy constructor. More... | |
~TConvLayer () | |
Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent) |
Writes the information and the weights about the layer in an XML node. More... | |
void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) |
Compute weight, bias and activation gradients. More... | |
void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false) |
Computes activation of the layer for the given input. More... | |
EActivationFunction | GetActivationFunction () const |
const std::vector< Matrix_t > & | GetDerivatives () const |
std::vector< Matrix_t > & | GetDerivatives () |
Matrix_t & | GetDerivativesAt (size_t i) |
const Matrix_t & | GetDerivativesAt (size_t i) const |
Scalar_t | GetDropoutProbability () const |
size_t | GetFilterDepth () const |
Getters. More... | |
size_t | GetFilterHeight () const |
size_t | GetFilterWidth () const |
size_t | GetNLocalViewPixels () const |
size_t | GetNLocalViews () const |
size_t | GetPaddingHeight () const |
size_t | GetPaddingWidth () const |
ERegularization | GetRegularization () const |
size_t | GetStrideCols () const |
size_t | GetStrideRows () const |
Scalar_t | GetWeightDecay () const |
void | Print () const |
Prints the info about the layer. More... | |
virtual void | ReadWeightsFromXML (void *parent) |
Read the information and the weights about the layer from XML node. More... | |
Public Member Functions inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
Constructor. More... | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
General Constructor with different weights dimension. More... | |
VGeneralLayer (VGeneralLayer< Architecture_t > *layer) | |
Copy the layer provided as a pointer. More... | |
VGeneralLayer (const VGeneralLayer &) | |
Copy Constructor. More... | |
virtual | ~VGeneralLayer () |
Virtual Destructor. More... | |
void | CopyBiases (const std::vector< Matrix_t > &otherBiases) |
Copies the biases provided as an input. More... | |
void | CopyWeights (const std::vector< Matrix_t > &otherWeights) |
Copies the weights provided as an input. More... | |
const std::vector< Matrix_t > & | GetActivationGradients () const |
std::vector< Matrix_t > & | GetActivationGradients () |
Matrix_t & | GetActivationGradientsAt (size_t i) |
const Matrix_t & | GetActivationGradientsAt (size_t i) const |
size_t | GetBatchSize () const |
Getters. More... | |
const std::vector< Matrix_t > & | GetBiases () const |
std::vector< Matrix_t > & | GetBiases () |
const Matrix_t & | GetBiasesAt (size_t i) const |
Matrix_t & | GetBiasesAt (size_t i) |
const std::vector< Matrix_t > & | GetBiasGradients () const |
std::vector< Matrix_t > & | GetBiasGradients () |
const Matrix_t & | GetBiasGradientsAt (size_t i) const |
Matrix_t & | GetBiasGradientsAt (size_t i) |
size_t | GetDepth () const |
size_t | GetHeight () const |
EInitialization | GetInitialization () const |
size_t | GetInputDepth () const |
size_t | GetInputHeight () const |
size_t | GetInputWidth () const |
const std::vector< Matrix_t > & | GetOutput () const |
std::vector< Matrix_t > & | GetOutput () |
Matrix_t & | GetOutputAt (size_t i) |
const Matrix_t & | GetOutputAt (size_t i) const |
const std::vector< Matrix_t > & | GetWeightGradients () const |
std::vector< Matrix_t > & | GetWeightGradients () |
const Matrix_t & | GetWeightGradientsAt (size_t i) const |
Matrix_t & | GetWeightGradientsAt (size_t i) |
const std::vector< Matrix_t > & | GetWeights () const |
std::vector< Matrix_t > & | GetWeights () |
const Matrix_t & | GetWeightsAt (size_t i) const |
Matrix_t & | GetWeightsAt (size_t i) |
size_t | GetWidth () const |
void | Initialize () |
Initialize the weights and biases according to the given initialization method. More... | |
bool | IsTraining () const |
void | ReadMatrixXML (void *node, const char *name, Matrix_t &matrix) |
void | SetBatchSize (size_t batchSize) |
Setters. More... | |
void | SetDepth (size_t depth) |
void | SetHeight (size_t height) |
void | SetInputDepth (size_t inputDepth) |
void | SetInputHeight (size_t inputHeight) |
void | SetInputWidth (size_t inputWidth) |
void | SetIsTraining (bool isTraining) |
void | SetWidth (size_t width) |
void | Update (const Scalar_t learningRate) |
Updates the weights and biases, given the learning rate. More... | |
void | UpdateBiases (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the biases, given the gradients and the learning rate. More... | |
void | UpdateBiasGradients (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the bias gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeightGradients (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weight gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeights (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weights, given the gradients and the learning rate,. More... | |
void | WriteMatrixToXML (void *node, const char *name, const Matrix_t &matrix) |
void | WriteTensorToXML (void *node, const char *name, const std::vector< Matrix_t > &tensor) |
helper functions for XML More... | |
Private Attributes | |
std::vector< int > | fBackwardIndices |
Vector of indices used for a fast Im2Col in backward pass. More... | |
std::vector< Matrix_t > | fDerivatives |
First fDerivatives of the activations of this layer. More... | |
Scalar_t | fDropoutProbability |
Probability that an input is active. More... | |
EActivationFunction | fF |
Activation function of the layer. More... | |
size_t | fFilterDepth |
The depth of the filter. More... | |
size_t | fFilterHeight |
The height of the filter. More... | |
size_t | fFilterWidth |
The width of the filter. More... | |
std::vector< int > | fForwardIndices |
Vector of indices used for a fast Im2Col in forward pass. More... | |
size_t | fNLocalViewPixels |
The number of pixels in one local image view. More... | |
size_t | fNLocalViews |
The number of local views in one image. More... | |
size_t | fPaddingHeight |
The number of zero layers added top and bottom of the input. More... | |
size_t | fPaddingWidth |
The number of zero layers left and right of the input. More... | |
ERegularization | fReg |
The regularization method. More... | |
size_t | fStrideCols |
The number of column pixels to slid the filter each step. More... | |
size_t | fStrideRows |
The number of row pixels to slid the filter each step. More... | |
Scalar_t | fWeightDecay |
The weight decay. More... | |
Additional Inherited Members | |
Protected Attributes inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
std::vector< Matrix_t > | fActivationGradients |
Gradients w.r.t. the activations of this layer. More... | |
size_t | fBatchSize |
Batch size used for training and evaluation. More... | |
std::vector< Matrix_t > | fBiases |
The biases associated to the layer. More... | |
std::vector< Matrix_t > | fBiasGradients |
Gradients w.r.t. the bias values of the layer. More... | |
size_t | fDepth |
The depth of the layer. More... | |
size_t | fHeight |
The height of the layer. More... | |
EInitialization | fInit |
The initialization method. More... | |
size_t | fInputDepth |
The depth of the previous layer or input. More... | |
size_t | fInputHeight |
The height of the previous layer or input. More... | |
size_t | fInputWidth |
The width of the previous layer or input. More... | |
bool | fIsTraining |
Flag indicatig the mode. More... | |
std::vector< Matrix_t > | fOutput |
Activations of this layer. More... | |
std::vector< Matrix_t > | fWeightGradients |
Gradients w.r.t. the weights of the layer. More... | |
std::vector< Matrix_t > | fWeights |
The weights associated to the layer. More... | |
size_t | fWidth |
The width of this layer. More... | |
#include <TMVA/DNN/CNN/ConvLayer.h>
using TMVA::DNN::CNN::TConvLayer< Architecture_t >::Matrix_t = typename Architecture_t::Matrix_t |
Definition at line 45 of file ConvLayer.h.
using TMVA::DNN::CNN::TConvLayer< Architecture_t >::Scalar_t = typename Architecture_t::Scalar_t |
Definition at line 46 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::TConvLayer | ( | size_t | BatchSize, |
size_t | InputDepth, | ||
size_t | InputHeight, | ||
size_t | InputWidth, | ||
size_t | Depth, | ||
size_t | Height, | ||
size_t | Width, | ||
size_t | WeightsNRows, | ||
size_t | WeightsNCols, | ||
size_t | BiasesNRows, | ||
size_t | BiasesNCols, | ||
size_t | OutputNSlices, | ||
size_t | OutputNRows, | ||
size_t | OutputNCols, | ||
EInitialization | Init, | ||
size_t | FilterDepth, | ||
size_t | FilterHeight, | ||
size_t | FilterWidth, | ||
size_t | StrideRows, | ||
size_t | StrideCols, | ||
size_t | PaddingHeight, | ||
size_t | PaddingWidth, | ||
Scalar_t | DropoutProbability, | ||
EActivationFunction | f, | ||
ERegularization | Reg, | ||
Scalar_t | WeightDecay | ||
) |
Constructor.
Definition at line 147 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::TConvLayer | ( | TConvLayer< Architecture_t > * | layer | ) |
Copy the conv layer provided as a pointer.
Definition at line 170 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::TConvLayer | ( | const TConvLayer< Architecture_t > & | convLayer | ) |
Copy constructor.
Definition at line 193 of file ConvLayer.h.
TMVA::DNN::CNN::TConvLayer< Architecture_t >::~TConvLayer | ( | ) |
Destructor.
Definition at line 212 of file ConvLayer.h.
|
virtual |
Writes the information and the weights about the layer in an XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 321 of file ConvLayer.h.
|
virtual |
Compute weight, bias and activation gradients.
Uses the precomputed first partial derviatives of the activation function computed during forward propagation and modifies them. Must only be called directly at the corresponding call to Forward(...).
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 284 of file ConvLayer.h.
|
virtual |
Computes activation of the layer for the given input.
The input must be in 3D tensor form with the different matrices corresponding to different events in the batch. Computes activations as well as the first partial derivative of the activation function at those activations.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 218 of file ConvLayer.h.
|
inline |
Definition at line 137 of file ConvLayer.h.
|
inline |
Definition at line 131 of file ConvLayer.h.
|
inline |
Definition at line 132 of file ConvLayer.h.
|
inline |
Definition at line 134 of file ConvLayer.h.
|
inline |
Definition at line 135 of file ConvLayer.h.
|
inline |
Definition at line 129 of file ConvLayer.h.
|
inline |
Getters.
Definition at line 116 of file ConvLayer.h.
|
inline |
Definition at line 117 of file ConvLayer.h.
|
inline |
Definition at line 118 of file ConvLayer.h.
|
inline |
Definition at line 126 of file ConvLayer.h.
|
inline |
Definition at line 127 of file ConvLayer.h.
|
inline |
Definition at line 123 of file ConvLayer.h.
|
inline |
Definition at line 124 of file ConvLayer.h.
|
inline |
Definition at line 138 of file ConvLayer.h.
|
inline |
Definition at line 121 of file ConvLayer.h.
|
inline |
Definition at line 120 of file ConvLayer.h.
|
inline |
Definition at line 139 of file ConvLayer.h.
|
virtual |
Prints the info about the layer.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 301 of file ConvLayer.h.
|
virtual |
Read the information and the weights about the layer from XML node.
Implements TMVA::DNN::VGeneralLayer< Architecture_t >.
Definition at line 346 of file ConvLayer.h.
|
private |
Vector of indices used for a fast Im2Col in backward pass.
Definition at line 67 of file ConvLayer.h.
|
private |
First fDerivatives of the activations of this layer.
Definition at line 64 of file ConvLayer.h.
|
private |
Probability that an input is active.
Definition at line 62 of file ConvLayer.h.
|
private |
Activation function of the layer.
Definition at line 70 of file ConvLayer.h.
|
private |
The depth of the filter.
Definition at line 49 of file ConvLayer.h.
|
private |
The height of the filter.
Definition at line 50 of file ConvLayer.h.
|
private |
The width of the filter.
Definition at line 51 of file ConvLayer.h.
|
private |
Vector of indices used for a fast Im2Col in forward pass.
Definition at line 66 of file ConvLayer.h.
|
private |
The number of pixels in one local image view.
Definition at line 59 of file ConvLayer.h.
|
private |
The number of local views in one image.
Definition at line 60 of file ConvLayer.h.
|
private |
The number of zero layers added top and bottom of the input.
Definition at line 56 of file ConvLayer.h.
|
private |
The number of zero layers left and right of the input.
Definition at line 57 of file ConvLayer.h.
|
private |
The regularization method.
Definition at line 71 of file ConvLayer.h.
|
private |
The number of column pixels to slid the filter each step.
Definition at line 54 of file ConvLayer.h.
|
private |
The number of row pixels to slid the filter each step.
Definition at line 53 of file ConvLayer.h.
|
private |
The weight decay.
Definition at line 72 of file ConvLayer.h.