71 printf(
"trd2 : dx1=%f, dx2=%f, dy1=%f, dy2=%f, dz=%f\n",
91 printf(
"trd2 : dx1=%f, dx2=%f, dy1=%f, dy2=%f, dz=%f\n",
152 norm[0] = norm[1] = 0;
153 norm[2] = (dir[2]>=0)?1:-1;
161 norm[0] = (point[0]>0)?calf:(-calf);
164 Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
177 distx = 0.5*(
fDy1+
fDy2)-fy*point[2];
182 norm[1] = (point[1]>0)?calf:(-calf);
184 Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
216 if (iact<3 && safe) {
235 dist[0]=-(point[2]+
fDz)/dir[2];
236 }
else if (dir[2]>0) {
237 dist[0]=(
fDz-point[2])/dir[2];
239 if (dist[0]<=0)
return 0.0;
241 cn = -dir[0]+fx*dir[2];
243 dist[1] = point[0]+distx;
244 if (dist[1]<=0)
return 0.0;
247 cn = dir[0]+fx*dir[2];
250 if (s<=0)
return 0.0;
252 if (s<dist[1]) dist[1] =
s;
255 cn = -dir[1]+fy*dir[2];
257 dist[2] = point[1]+disty;
258 if (dist[2]<=0)
return 0.0;
261 cn = dir[1]+fy*dir[2];
264 if (s<=0)
return 0.0;
266 if (s<dist[2]) dist[2] =
s;
279 if (iact<3 && safe) {
299 if (point[2]<=-
fDz) {
303 snxt = (
fDz+point[2])/cn;
305 xnew = point[0]+snxt*dir[0];
306 if (TMath::Abs(xnew) <
fDx1) {
307 ynew = point[1]+snxt*dir[1];
308 if (TMath::Abs(ynew) <
fDy1)
return snxt;
310 }
else if (point[2]>=
fDz) {
314 snxt = (
fDz-point[2])/cn;
316 xnew = point[0]+snxt*dir[0];
317 if (TMath::Abs(xnew) <
fDx2) {
318 ynew = point[1]+snxt*dir[1];
319 if (TMath::Abs(ynew) <
fDy2)
return snxt;
323 if (point[0]<=-distx) {
324 cn = -dir[0]+fx*dir[2];
327 snxt = (point[0]+distx)/cn;
329 znew = point[2]+snxt*dir[2];
330 if (TMath::Abs(znew) <
fDz) {
332 ynew = point[1]+snxt*dir[1];
333 if (TMath::Abs(ynew) < dy)
return snxt;
336 if (point[0]>=distx) {
337 cn = dir[0]+fx*dir[2];
340 snxt = (distx-point[0])/cn;
342 znew = point[2]+snxt*dir[2];
343 if (TMath::Abs(znew) <
fDz) {
345 ynew = point[1]+snxt*dir[1];
346 if (TMath::Abs(ynew) < dy)
return snxt;
350 if (point[1]<=-disty) {
351 cn = -dir[1]+fy*dir[2];
354 snxt = (point[1]+disty)/cn;
356 znew = point[2]+snxt*dir[2];
357 if (TMath::Abs(znew) <
fDz) {
359 xnew = point[0]+snxt*dir[0];
360 if (TMath::Abs(xnew) < dx)
return snxt;
363 if (point[1]>=disty) {
364 cn = dir[1]+fy*dir[2];
367 snxt = (disty-point[1])/cn;
369 znew = point[2]+snxt*dir[2];
370 if (TMath::Abs(znew) <
fDz) {
372 xnew = point[0]+snxt*dir[0];
373 if (TMath::Abs(xnew) < dx)
return snxt;
378 if (safz<safx && safz<safy) {
424 memset(normals, 0, 9*
sizeof(
Double_t));
426 if (point[0]>distx) {
436 if (point[1]>disty) {
466 normals[0]=-normals[0];
471 normals[4]=-normals[4];
476 normals[8]=-normals[8];
496 Double_t zmin, zmax, dx1n, dx2n, dy1n, dy2n;
501 Warning(
"Divide",
"dividing a Trd2 on X not implemented");
504 Warning(
"Divide",
"dividing a Trd2 on Y not implemented");
511 for (
id=0;
id<ndiv;
id++) {
512 zmin = start+
id*step;
513 zmax = start+(
id+1)*step;
518 shape =
new TGeoTrd2(dx1n, dx2n, dy1n, dy2n, step/2.);
527 Error(
"Divide",
"Wrong axis type for division");
548 Error(
"GetFittingBox",
"cannot handle parametrized rotated volumes");
555 Error(
"GetFittingBox",
"wrong matrix - parametrized box is outside this");
560 dd[0] = parambox->
GetDX();
561 dd[1] = parambox->
GetDY();
562 dd[2] = parambox->
GetDZ();
567 Error(
"GetFittingBox",
"wrong matrix");
571 if (dd[0]>=0 && dd[1]>=0) {
583 dd[0] = dx0-fx*z-origin[0];
584 dd[1] = dy0-fy*z-origin[1];
586 dd[0] =
TMath::Min(dd[0], dx0-fx*z-origin[0]);
587 dd[1] =
TMath::Min(dd[1], dy0-fy*z-origin[1]);
588 if (dd[0]<0 || dd[1]<0) {
589 Error(
"GetFittingBox",
"wrong matrix");
606 Error(
"GetMakeRuntimeShape",
"invalid mother");
621 return (
new TGeoTrd2(dx1, dx2, dy1, dy2, dz));
629 printf(
"*** Shape %s: TGeoTrd2 ***\n",
GetName());
630 printf(
" dx1 = %11.5f\n",
fDx1);
631 printf(
" dx2 = %11.5f\n",
fDx2);
632 printf(
" dy1 = %11.5f\n",
fDy1);
633 printf(
" dy2 = %11.5f\n",
fDy2);
634 printf(
" dz = %11.5f\n",
fDz);
635 printf(
" Bounding box:\n");
654 else saf[1]=(distx-
TMath::Abs(point[0]))*calf;
659 distx = 0.5*(
fDy1+
fDy2)-fy*point[2];
661 else saf[2]=(distx-
TMath::Abs(point[1]))*calf;
664 for (
Int_t i=0; i<3; i++) saf[i]=-saf[i];
675 out <<
" dx1 = " <<
fDx1 <<
";" << std::endl;
676 out <<
" dx2 = " <<
fDx2 <<
";" << std::endl;
677 out <<
" dy1 = " <<
fDy1 <<
";" << std::endl;
678 out <<
" dy2 = " <<
fDy2 <<
";" << std::endl;
679 out <<
" dz = " <<
fDZ <<
";" << std::endl;
680 out <<
" TGeoShape *" <<
GetPointerName() <<
" = new TGeoTrd2(\"" <<
GetName() <<
"\", dx1,dx2,dy1,dy2,dz);" << std::endl;
703 points[ 0] = -
fDx1; points[ 1] = -
fDy1; points[ 2] = -
fDz;
704 points[ 3] = -
fDx1; points[ 4] =
fDy1; points[ 5] = -
fDz;
705 points[ 6] =
fDx1; points[ 7] =
fDy1; points[ 8] = -
fDz;
706 points[ 9] =
fDx1; points[10] = -
fDy1; points[11] = -
fDz;
707 points[12] = -
fDx2; points[13] = -
fDy2; points[14] =
fDz;
708 points[15] = -
fDx2; points[16] =
fDy2; points[17] =
fDz;
709 points[18] =
fDx2; points[19] =
fDy2; points[20] =
fDz;
710 points[21] =
fDx2; points[22] = -
fDy2; points[23] =
fDz;
719 points[ 0] = -
fDx1; points[ 1] = -
fDy1; points[ 2] = -
fDz;
720 points[ 3] = -
fDx1; points[ 4] =
fDy1; points[ 5] = -
fDz;
721 points[ 6] =
fDx1; points[ 7] =
fDy1; points[ 8] = -
fDz;
722 points[ 9] =
fDx1; points[10] = -
fDy1; points[11] = -
fDz;
723 points[12] = -
fDx2; points[13] = -
fDy2; points[14] =
fDz;
724 points[15] = -
fDx2; points[16] =
fDy2; points[17] =
fDz;
725 points[18] =
fDx2; points[19] =
fDy2; points[20] =
fDz;
726 points[21] =
fDx2; points[22] = -
fDy2; points[23] =
fDz;
772 for (
Int_t i=0; i<vecsize; i++) inside[i] =
Contains(&points[3*i]);
790 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
798 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
808 for (
Int_t i=0; i<vecsize; i++) safe[i] =
Safety(&points[3*i], inside[i]);
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
double dist(Rotation3D const &r1, Rotation3D const &r2)
virtual Int_t GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
Fills real parameters of a positioned box inside this. Returns 0 if successful.
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
Long64_t LocMax(Long64_t n, const T *a)
Return index of array with the maximum element.
void SetFinder(TGeoPatternFinder *finder)
virtual Double_t GetDX() const
void AddNodeOffset(TGeoVolume *vol, Int_t copy_no, Double_t offset=0, Option_t *option="")
Add a division node to the list of nodes.
Geometrical transformation package.
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
virtual void InspectShape() const
print shape parameters
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
Short_t Min(Short_t a, Short_t b)
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
virtual void InspectShape() const
Prints shape parameters.
TObject * At(Int_t idx) const
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual ~TGeoTrd2()
destructor
static Double_t Tolerance()
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this trd2 shape belonging to volume "voldiv" into ndiv volumes called divname, from start position with the given step.
Int_t GetNdaughters() const
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the trd2 Boundary safe algorithm.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
void AddVolume(TGeoVolume *vol)
Add a volume with valid shape to the list of volumes.
TGeoMedium * GetMedium() const
virtual void ComputeBBox()
compute bounding box for a trd2
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
const char * GetPointerName() const
Provide a pointer name containing uid.
void GetOppositeCorner(const Double_t *point, Int_t inorm, Double_t *vertex, Double_t *normals) const
get the opposite corner of the intersected face
Base finder class for patterns.
virtual const char * GetName() const
Get the shape name.
A trapezoid with both x and y lengths varying with z.
Base abstract class for all shapes.
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother ...
virtual void SetPoints(Double_t *points) const
create trd2 mesh points
virtual void Sizeof3D() const
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual const Double_t * GetOrigin() const
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
virtual Double_t GetDY() const
void SetDivIndex(Int_t index)
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
virtual void SetDimensions(Double_t *param)
set arb8 params in one step :
Bool_t IsRotation() const
void GetVisibleCorner(const Double_t *point, Double_t *vertex, Double_t *normals) const
get the most visible corner from outside point and the normals
R__EXTERN TGeoManager * gGeoManager
Bool_t TestShapeBit(UInt_t f) const
Node containing an offset.
static constexpr double s
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this shape check Z range
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
you should not use this method at all Int_t Int_t z
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from inside point to surface of the trd2 Boundary safe algorithm.
void SetVertex(Double_t *vertex) const
set vertex of a corner according to visibility flags
Short_t Max(Short_t a, Short_t b)
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Double_t Sqrt(Double_t x)
Long64_t LocMin(Long64_t n, const T *a)
Return index of array with the minimum element.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Sizeof3D() const
fill size of this 3-D object
virtual Double_t GetDZ() const
const char * Data() const