69 if ((dx1<0) || (dx2<0) || (dy<0) || (dz<0)) {
71 printf(
"trd1 : dx1=%f, dx2=%f, dy=%f, dz=%f\n",
88 if ((dx1<0) || (dx2<0) || (dy<0) || (dz<0)) {
90 printf(
"trd1 : dx1=%f, dx2=%f, dy=%f, dz=%f\n",
150 norm[0] = norm[1] = 0;
151 norm[2] = (dir[2]>=0)?1:-1;
152 if (safe<1
E-6)
return;
159 norm[0] = (point[0]>0)?calf:(-calf);
162 Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
167 if (safe<1
E-6)
return;
173 norm[0] = norm[2] = 0;
174 norm[1] = (dir[1]>=0)?1:-1;
200 if (iact<3 && safe) {
216 dist[0]=-(point[2]+
fDz)/dir[2];
217 }
else if (dir[2]>0) {
218 dist[0]=(
fDz-point[2])/dir[2];
220 if (dist[0]<=0)
return 0.0;
222 cn = -dir[0]+fx*dir[2];
224 dist[1] = point[0]+distx;
225 if (dist[1]<=0)
return 0.0;
228 cn = dir[0]+fx*dir[2];
231 if (s<=0)
return 0.0;
233 if (s<dist[1]) dist[1] =
s;
237 dist[2]=-(point[1]+
fDy)/dir[1];
238 }
else if (dir[1]>0) {
239 dist[2]=(
fDy-point[1])/dir[1];
241 if (dist[2]<=0)
return 0.0;
256 memset(normals, 0, 9*
sizeof(
Double_t));
258 if (point[0]>distx) {
296 normals[0]=-normals[0];
301 normals[4]=-normals[4];
306 normals[8]=-normals[8];
318 if (iact<3 && safe) {
336 if (point[2]<=-
fDz) {
339 snxt = -(
fDz+point[2])/dir[2];
341 xnew = point[0]+snxt*dir[0];
342 if (TMath::Abs(xnew) <=
fDx1) {
343 ynew = point[1]+snxt*dir[1];
344 if (TMath::Abs(ynew) <=
fDy)
return snxt;
346 }
else if (point[2]>=
fDz) {
349 snxt = (
fDz-point[2])/dir[2];
351 xnew = point[0]+snxt*dir[0];
352 if (TMath::Abs(xnew) <=
fDx2) {
353 ynew = point[1]+snxt*dir[1];
354 if (TMath::Abs(ynew) <=
fDy)
return snxt;
358 if (point[0]<=-distx) {
359 cn = -dir[0]+fx*dir[2];
362 snxt = (point[0]+distx)/cn;
364 ynew = point[1]+snxt*dir[1];
365 if (TMath::Abs(ynew) <=
fDy) {
366 znew = point[2]+snxt*dir[2];
367 if (TMath::Abs(znew) <=
fDz)
return snxt;
370 if (point[0]>=distx) {
371 cn = dir[0]+fx*dir[2];
374 snxt = (distx-point[0])/cn;
376 ynew = point[1]+snxt*dir[1];
377 if (TMath::Abs(ynew) <
fDy) {
378 znew = point[2]+snxt*dir[2];
379 if (TMath::Abs(znew) <
fDz)
return snxt;
383 if (point[1]<=-
fDy) {
387 snxt = (point[1]+
fDy)/cn;
389 znew = point[2]+snxt*dir[2];
390 if (TMath::Abs(znew) <
fDz) {
391 xnew = point[0]+snxt*dir[0];
393 if (TMath::Abs(xnew) < dx)
return snxt;
395 }
else if (point[1]>=
fDy) {
399 snxt = (
fDy-point[1])/cn;
401 znew = point[2]+snxt*dir[2];
402 if (TMath::Abs(znew) <
fDz) {
403 xnew = point[0]+snxt*dir[0];
405 if (TMath::Abs(xnew) < dx)
return snxt;
410 if (safz<safx && safz<safy) {
443 Warning(
"Divide",
"dividing a Trd1 on X not implemented");
452 vmulti->AddVolume(vol);
454 for (
id=0;
id<ndiv;
id++) {
464 for (
id=0;
id<ndiv;
id++) {
465 zmin = start+
id*step;
466 zmax = start+(
id+1)*step;
471 vmulti->AddVolume(vol);
478 Error(
"Divide",
"Wrong axis type for division");
522 Error(
"GetFittingBox",
"cannot handle parametrized rotated volumes");
529 Error(
"GetFittingBox",
"wrong matrix - parametrized box is outside this");
534 dd[0] = parambox->
GetDX();
535 dd[1] = parambox->
GetDY();
536 dd[2] = parambox->
GetDZ();
541 Error(
"GetFittingBox",
"wrong matrix");
549 Error(
"GetFittingBox",
"wrong matrix");
563 dd[0] = dx0-fx*z-origin[0];
565 dd[0] =
TMath::Min(dd[0], dx0-fx*z-origin[0]);
567 Error(
"GetFittingBox",
"wrong matrix");
584 Error(
"GetMakeRuntimeShape",
"invalid mother");
597 return (
new TGeoTrd1(dx1, dx2, dy, dz));
605 printf(
"*** Shape %s: TGeoTrd1 ***\n",
GetName());
606 printf(
" dx1 = %11.5f\n",
fDx1);
607 printf(
" dx2 = %11.5f\n",
fDx2);
608 printf(
" dy = %11.5f\n",
fDy);
609 printf(
" dz = %11.5f\n",
fDz);
610 printf(
" Bounding box:\n");
629 else saf[1]=(distx-
TMath::Abs(point[0]))*calf;
633 for (
Int_t i=0; i<3; i++) saf[i]=-saf[i];
644 out <<
" dx1 = " <<
fDx1 <<
";" << std::endl;
645 out <<
" dx2 = " <<
fDx2 <<
";" << std::endl;
646 out <<
" dy = " <<
fDy <<
";" << std::endl;
647 out <<
" dz = " <<
fDZ <<
";" << std::endl;
648 out <<
" TGeoShape *" <<
GetPointerName() <<
" = new TGeoTrd1(\"" <<
GetName() <<
"\", dx1,dx2,dy,dz);" << std::endl;
698 points[ 0] = -
fDx1; points[ 1] = -
fDy; points[ 2] = -
fDz;
699 points[ 3] = -
fDx1; points[ 4] =
fDy; points[ 5] = -
fDz;
700 points[ 6] =
fDx1; points[ 7] =
fDy; points[ 8] = -
fDz;
701 points[ 9] =
fDx1; points[10] = -
fDy; points[11] = -
fDz;
702 points[12] = -
fDx2; points[13] = -
fDy; points[14] =
fDz;
703 points[15] = -
fDx2; points[16] =
fDy; points[17] =
fDz;
704 points[18] =
fDx2; points[19] =
fDy; points[20] =
fDz;
705 points[21] =
fDx2; points[22] = -
fDy; points[23] =
fDz;
714 points[ 0] = -
fDx1; points[ 1] = -
fDy; points[ 2] = -
fDz;
715 points[ 3] = -
fDx1; points[ 4] =
fDy; points[ 5] = -
fDz;
716 points[ 6] =
fDx1; points[ 7] =
fDy; points[ 8] = -
fDz;
717 points[ 9] =
fDx1; points[10] = -
fDy; points[11] = -
fDz;
718 points[12] = -
fDx2; points[13] = -
fDy; points[14] =
fDz;
719 points[15] = -
fDx2; points[16] =
fDy; points[17] =
fDz;
720 points[18] =
fDx2; points[19] =
fDy; points[20] =
fDz;
721 points[21] =
fDx2; points[22] = -
fDy; points[23] =
fDz;
739 for (
Int_t i=0; i<vecsize; i++) inside[i] =
Contains(&points[3*i]);
757 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
765 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
775 for (
Int_t i=0; i<vecsize; i++) safe[i] =
Safety(&points[3*i], inside[i]);
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
virtual ~TGeoTrd1()
destructor
double dist(Rotation3D const &r1, Rotation3D const &r2)
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
Long64_t LocMax(Long64_t n, const T *a)
Return index of array with the maximum element.
void SetFinder(TGeoPatternFinder *finder)
virtual Double_t GetDX() const
void AddNodeOffset(TGeoVolume *vol, Int_t copy_no, Double_t offset=0, Option_t *option="")
Add a division node to the list of nodes.
Geometrical transformation package.
virtual void SetPoints(Double_t *points) const
create arb8 mesh points
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
virtual void ComputeBBox()
compute bounding box for a trd1
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
Short_t Min(Short_t a, Short_t b)
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual void InspectShape() const
Prints shape parameters.
TObject * At(Int_t idx) const
A trapezoid with only x length varying with z.
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Int_t GetNdaughters() const
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
TGeoMedium * GetMedium() const
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
virtual Int_t GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
Fills real parameters of a positioned box inside this. Returns 0 if successful.
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
const char * GetPointerName() const
Provide a pointer name containing uid.
Base finder class for patterns.
virtual const char * GetName() const
Get the shape name.
virtual void Sizeof3D() const
fill size of this 3-D object
Base abstract class for all shapes.
void SetVertex(Double_t *vertex) const
set vertex of a corner according to visibility flags
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother ...
virtual void SetDimensions(Double_t *param)
set trd1 params in one step :
virtual void Sizeof3D() const
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual const Double_t * GetOrigin() const
virtual void InspectShape() const
print shape parameters
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this shape check Z range
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
Divide this trd1 shape belonging to volume "voldiv" into ndiv volumes called divname, from start position with the given step.
virtual Double_t GetDY() const
void SetDivIndex(Int_t index)
constexpr Double_t E()
Base of natural log: .
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
Bool_t IsRotation() const
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
R__EXTERN TGeoManager * gGeoManager
void GetVisibleCorner(const Double_t *point, Double_t *vertex, Double_t *normals) const
get the most visible corner from outside point and the normals
Bool_t TestShapeBit(UInt_t f) const
Node containing an offset.
static constexpr double s
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
you should not use this method at all Int_t Int_t z
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specified by dirs. Store output in dist...
Short_t Max(Short_t a, Short_t b)
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from inside point to surface of the trd1 Boundary safe algorithm.
Double_t Sqrt(Double_t x)
void GetOppositeCorner(const Double_t *point, Int_t inorm, Double_t *vertex, Double_t *normals) const
get the opposite corner of the intersected face
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
Long64_t LocMin(Long64_t n, const T *a)
Return index of array with the minimum element.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the trd1 Boundary safe algorithm.
virtual Double_t GetDZ() const
const char * Data() const