Logo ROOT   6.14/05
Reference Guide
AllIntegrationTypes.h
Go to the documentation of this file.
1 // @(#)root/mathmore:$Id$
2 // Author: Magdalena Slawinska 10/2007
3 
4  /**********************************************************************
5  * *
6  * Copyright (c) 2007 ROOT Foundation, CERN/PH-SFT *
7  * *
8  * *
9  **********************************************************************/
10 
11 
12 // Integration types for
13 // one and multidimensional integration
14 // eith a common interface
15 
16 #ifndef ROOT_Math_AllIntegrationTypes
17 #define ROOT_Math_AllIntegrationTypes
18 
19 
20 
21 namespace ROOT {
22 namespace Math {
23 
24 
25  // type of integration
26 
27 
28 
29  //for 1-dim integration
30  namespace IntegrationOneDim {
31 
32 
33  /**
34  enumeration specifying the integration types.
35  <ul>
36  <li>kDEFAULT: default type specifiend in the static options
37  <li>kGAUSS: simple Gauss integration method with fixed rule
38  <li>kLEGENDRE: Gauss-Legendre integration
39  <li>kNONADAPTIVE : to be used for smooth functions
40  <li>kADAPTIVE : to be used for general functions without singularities.
41  <li>kADAPTIVESINGULAR: default adaptive integration type which can be used in the case of the presence of singularities.
42  </ul>
43  @ingroup Integration
44  */
46 
47  }
48 
49  //for multi-dim integration
50  namespace IntegrationMultiDim {
51 
52 
53  /**
54  enumeration specifying the integration types.
55  <ul>
56  <li>kDEFAULT : default type specified in the static option
57  <li>kADAPTIVE : adaptive multi-dimensional integration
58  <li>kPLAIN MC integration
59  <li>kMISER MC integration
60  <li>kVEGAS MC integration
61  </ul>
62  @ingroup MCIntegration
63  */
64 
66 
67  }
68 
69 
70 } // namespace Math
71 } // namespace ROOT
72 
73 #endif /* ROOT_Math_AllIntegrationTypes */
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
Type
enumeration specifying the integration types.
Type
enumeration specifying the integration types.
Namespace for new Math classes and functions.