18 #ifndef TMVA_DNN_FUNCTIONS 19 #define TMVA_DNN_FUNCTIONS 84 template<
typename Architecture_t>
85 inline void evaluate(
typename Architecture_t::Matrix_t &
A,
110 template<
typename Architecture_t>
113 const typename Architecture_t::Matrix_t &
A)
141 template<
typename Architecture_t>
142 inline void evaluate(
typename Architecture_t::Matrix_t &
A,
144 const typename Architecture_t::Matrix_t &X)
164 template <
typename Architecture_t>
166 const typename Architecture_t::Matrix_t &
output,
const typename Architecture_t::Matrix_t &weights)
167 -> decltype(Architecture_t::CrossEntropy(Y,
output, weights))
181 template <
typename Architecture_t>
183 const typename Architecture_t::Matrix_t &Y,
184 const typename Architecture_t::Matrix_t &
output,
185 const typename Architecture_t::Matrix_t &weights)
192 Architecture_t::SoftmaxCrossEntropyGradients(dY, Y, output, weights);
204 template<
typename Architecture_t>
207 -> decltype(Architecture_t::L1Regularization(
A))
214 return Architecture_t::L1Regularization(
A);
216 return Architecture_t::L2Regularization(
A);
224 template<
typename Architecture_t>
226 const typename Architecture_t::Matrix_t &W,
235 Architecture_t::AddL1RegularizationGradients(A, W, weightDecay);
238 Architecture_t::AddL2RegularizationGradients(A, W, weightDecay);
248 template<
typename Architecture_t>
void evaluateDerivative(typename Architecture_t::Matrix_t &B, EActivationFunction f, const typename Architecture_t::Matrix_t &A)
Compute the first partial derivative of the activation function for the values given in matrix A and ...
static std::shared_ptr< std::function< double(double)> > Tanh
void evaluate(typename Architecture_t::Matrix_t &A, EActivationFunction f)
Apply the given activation function to each value in the given matrix A.
static std::shared_ptr< std::function< double(double)> > Sigmoid
double weightDecay(double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization)
compute the weight decay for regularization (L1 or L2)
void evaluateGradients(typename Architecture_t::Matrix_t &dY, ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights)
Compute the gradient of the given output function f for given activations output of the output layer ...
auto regularization(const typename Architecture_t::Matrix_t &A, ERegularization R) -> decltype(Architecture_t::L1Regularization(A))
Evaluate the regularization functional for a given weight matrix.
static std::shared_ptr< std::function< double(double)> > SoftSign
void Copy(void *source, void *dest)
void addRegularizationGradients(typename Architecture_t::Matrix_t &A, const typename Architecture_t::Matrix_t &W, typename Architecture_t::Scalar_t weightDecay, ERegularization R)
Add the regularization gradient corresponding to weight matrix W, to the matrix A.
EOutputFunction
Enum that represents output functions.
ELossFunction
Enum that represents objective functions for the net, i.e.
static std::shared_ptr< std::function< double(double)> > Gauss
Abstract ClassifierFactory template that handles arbitrary types.
ERegularization
Enum representing the regularization type applied for a given layer.
EActivationFunction
Enum that represents layer activation functions.
void initialize(typename Architecture_t::Matrix_t &A, EInitialization m)