25 const TString &methodTitle,
53 std::vector<std::vector<Float_t> > fArrayTrain(nvar);
58 for (
UInt_t j = 0; j < ntrains; j++) {
68 for (
UInt_t i = 0; i < nvar; i++) {
69 fArrayTrain[i].push_back(ev->
GetValue(i));
73 for (
UInt_t i = 0; i < nvar; i++) {
84 std::vector<std::vector<Float_t> > fArrayTest(nvar);
86 std::vector<std::vector<Float_t> > fArraySpectators(nvar);
89 for (
UInt_t j = 0; j < ntests; j++) {
98 for (
UInt_t i = 0; i < nvar; i++) {
99 fArrayTest[i].push_back(ev->
GetValue(i));
101 for (
UInt_t i = 0; i < nspectators; i++) {
105 for (
UInt_t i = 0; i < nvar; i++) {
108 for (
UInt_t i = 0; i < nspectators; i++) {
UInt_t GetNVariables() const
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
std::vector< std::string > fFactorTest
ROOT::R::TRDataFrame fDfTest
std::vector< TString > GetListOfVariables() const
returns list of variables
Virtual base Class for all MVA method.
const TString & GetLabel() const
ROOT::R::TRDataFrame fDfSpectators
DataSetInfo & DataInfo() const
Class that contains all the data information.
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not...
Long64_t GetNTrainingEvents() const
std::vector< std::string > fFactorTrain
UInt_t GetNSpectators(bool all=kTRUE) const
Long64_t GetNTestEvents() const
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
VariableInfo & GetSpectatorInfo(Int_t i)
RMethodBase(const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", ROOT::R::TRInterface &_r=ROOT::R::TRInterface::Instance())
Abstract ClassifierFactory template that handles arbitrary types.
ROOT::R::TRDataFrame fDfTrain
Float_t GetSpectator(UInt_t ivar) const
return spectator content
const Event * GetEvent() const