38 #ifndef ROOT_TMVA_MethodLikelihood 39 #define ROOT_TMVA_MethodLikelihood 158 #endif // MethodLikelihood_H void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
void WriteWeightsToStream(TFile &rf) const
write reference PDFs to ROOT file
virtual void WriteOptionsToStream(std::ostream &o, const TString &prefix) const
write options to stream
void Train()
create reference distributions (PDFs) from signal and background events: fill histograms and smooth t...
virtual ~MethodLikelihood()
destructor
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Virtual base Class for all MVA method.
std::vector< TH1 * > * fHistSig
static constexpr double ps
Ranking for variables in method (implementation)
#define ClassDef(name, id)
void ProcessOptions()
process user options reference cut value to distinguish signal-like from background-like events ...
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void ReadWeightsFromXML(void *wghtnode)
read weights from XML
TString * fInterpolateString
TString fBorderMethodString
Class that contains all the data information.
PDF wrapper for histograms; uses user-defined spline interpolation.
std::vector< PDF * > * fPDFSig
std::vector< TH1 * > * fHistBgd_smooth
Int_t * fAverageEvtPerBinVarS
std::vector< TH1 * > * fHistSig_smooth
const Ranking * CreateRanking()
computes ranking of input variables
Likelihood analysis ("non-parametric approach")
void WriteMonitoringHistosToFile() const
write histograms and PDFs to file for monitoring purposes
1-D histogram with a double per channel (see TH1 documentation)}
Bool_t fTransformLikelihoodOutput
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes.
void DeclareOptions()
define the options (their key words) that can be set in the option string
std::vector< PDF * > * fPDFBgd
void MakeClassSpecificHeader(std::ostream &, const TString &="") const
write specific header of the classifier (mostly include files)
void Init()
default initialisation called by all constructors
void ReadWeightsFromStream(std::istream &istr)
read weight info from file nothing to do for this method
Abstract ClassifierFactory template that handles arbitrary types.
Double_t TransformLikelihoodOutput(Double_t ps, Double_t pb) const
returns transformed or non-transformed output
void GetHelpMessage() const
get help message text
std::vector< TH1 * > * fHistBgd
MethodLikelihood(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
standard constructor
Int_t * fAverageEvtPerBinVarB
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns the likelihood estimator for signal fill a new Likelihood branch into the testTree ...
void AddWeightsXMLTo(void *parent) const
write weights to XML