119 Log() << kFATAL <<
"Please implement writing of weights as XML" <<
Endl;
147 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
148 fout <<
"};" << std::endl;
MsgLogger & Endl(MsgLogger &ml)
Singleton class for Global types used by TMVA.
Virtual base Class for all MVA method.
void GetHelpMessage() const
get help message text
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event
virtual ~MethodBayesClassifier(void)
destructor
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
Class that contains all the data information.
void Init(void)
default initialisation
void AddWeightsXMLTo(void *parent) const
void ReadWeightsFromStream(std::istream &istr)
read back the training results from a file (stream)
MethodBayesClassifier(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
standard constructor
void Train(void)
some training
#define REGISTER_METHOD(CLASS)
for example
Abstract ClassifierFactory template that handles arbitrary types.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Variable can handle classification with 2 classes.
void DeclareOptions()
define the options (their key words) that can be set in the option string
Description of bayesian classifiers.
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)