ROOT 6.10/09 Reference Guide |
Functions | |
template<typename Architecture > | |
auto | evaluate_net_bias (TNet< Architecture > &net, typename Architecture::Matrix_t &X, const typename Architecture::Matrix_t &Y, size_t l, size_t i, typename Architecture::Scalar_t dx) -> typename Architecture::Scalar_t |
Compute the loss of the net as a function of the weight at index i in layer l. More... | |
template<typename Architecture > | |
auto | evaluate_net_weight (TNet< Architecture > &net, typename Architecture::Matrix_t &X, const typename Architecture::Matrix_t &Y, size_t l, size_t i, size_t j, typename Architecture::Scalar_t dx) -> typename Architecture::Scalar_t |
Compute the loss of the net as a function of the weight at index (i,j) in layer l. More... | |
template<typename Architecture > | |
auto | testBackpropagationBiasesLinear (typename Architecture::Scalar_t dx) -> typename Architecture::Scalar_t |
Generate a random net, perform forward and backward propagation and check the bias gradients using numerical differentiation. More... | |
template<typename Architecture > | |
auto | testBackpropagationL1Regularization (typename Architecture::Scalar_t dx) -> typename Architecture::Scalar_t |
Generate a random, linear net, perform forward and backward propagation with L1 regularization and check the weight gradients using numerical differentiation. More... | |
template<typename Architecture > | |
auto | testBackpropagationL2Regularization (typename Architecture::Scalar_t dx) -> typename Architecture::Scalar_t |
Generate a random, linear net, perform forward and backward propagation with L2 regularization and check the weight gradients using numerical differentiation. More... | |
template<typename Architecture > | |
auto | testBackpropagationWeightsLinear (typename Architecture::Scalar_t dx) -> typename Architecture::Scalar_t |
Generate a random net, perform forward and backward propagation and check the weight gradients using numerical differentiation. More... | |
auto evaluate_net_bias | ( | TNet< Architecture > & | net, |
typename Architecture::Matrix_t & | X, | ||
const typename Architecture::Matrix_t & | Y, | ||
size_t | l, | ||
size_t | i, | ||
typename Architecture::Scalar_t | dx | ||
) | -> typename Architecture::Scalar_t |
Compute the loss of the net as a function of the weight at index i in layer l.
dx is added as an offset to the current value of the weight.
Definition at line 56 of file TestBackpropagation.h.
auto evaluate_net_weight | ( | TNet< Architecture > & | net, |
typename Architecture::Matrix_t & | X, | ||
const typename Architecture::Matrix_t & | Y, | ||
size_t | l, | ||
size_t | i, | ||
size_t | j, | ||
typename Architecture::Scalar_t | dx | ||
) | -> typename Architecture::Scalar_t |
Compute the loss of the net as a function of the weight at index (i,j) in layer l.
dx is added as an offset to the current value of the weight.
Definition at line 35 of file TestBackpropagation.h.
auto testBackpropagationBiasesLinear | ( | typename Architecture::Scalar_t | dx | ) | -> typename Architecture::Scalar_t |
Generate a random net, perform forward and backward propagation and check the bias gradients using numerical differentiation.
Returns the maximum relative gradient error and also prints it to stdout.
Definition at line 298 of file TestBackpropagation.h.
auto testBackpropagationL1Regularization | ( | typename Architecture::Scalar_t | dx | ) | -> typename Architecture::Scalar_t |
Generate a random, linear net, perform forward and backward propagation with L1 regularization and check the weight gradients using numerical differentiation.
Returns the maximum relative gradient error and also prints it to stdout.
Definition at line 151 of file TestBackpropagation.h.
auto testBackpropagationL2Regularization | ( | typename Architecture::Scalar_t | dx | ) | -> typename Architecture::Scalar_t |
Generate a random, linear net, perform forward and backward propagation with L2 regularization and check the weight gradients using numerical differentiation.
Returns the maximum relative gradient error and also prints it to stdout.
Definition at line 226 of file TestBackpropagation.h.
auto testBackpropagationWeightsLinear | ( | typename Architecture::Scalar_t | dx | ) | -> typename Architecture::Scalar_t |
Generate a random net, perform forward and backward propagation and check the weight gradients using numerical differentiation.
Returns the maximum relative gradient error and also prints it to stdout.
Definition at line 77 of file TestBackpropagation.h.