Processing /mnt/build/workspace/root-makedoc-v610/rootspi/rdoc/src/v6-10-00-patches/tutorials/tmva/TMVAMultipleBackgroundExample.C...
Start Test TMVAGAexample
========================
... event: 0 (200)
======> EVENT:0
var1 = -1.14361
var2 = -0.822373
var3 = -0.395426
var4 = -0.529427
created tree: TreeS
... event: 0 (200)
======> EVENT:0
var1 = -1.54361
var2 = -1.42237
var3 = -1.39543
var4 = -2.02943
created tree: TreeB0
... event: 0 (200)
======> EVENT:0
var1 = -1.54361
var2 = -0.822373
var3 = -0.395426
var4 = -2.02943
created tree: TreeB1
======> EVENT:0
var1 = 0.463304
var2 = 1.37192
var3 = -1.16769
var4 = -1.77551
created tree: TreeB2
created data file: tmva_example_multiple_background.root
========================
--- Training
<HEADER> DataSetInfo : [datasetBkg0] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg0] : Added class "Background"
: Add Tree TreeB0 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option *InverseBoostNegWeights* does not exist for BoostType=Grad --> change
: to new default for GradBoost *Pray*
<HEADER> DataSetFactory : [datasetBkg0] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.485 +0.637 +0.878
: var2: +0.485 +1.000 +0.752 +0.759
: var3: +0.637 +0.752 +1.000 +0.840
: var4: +0.878 +0.759 +0.840 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.377 +0.577 +0.847
: var2: +0.377 +1.000 +0.745 +0.722
: var3: +0.577 +0.745 +1.000 +0.811
: var4: +0.847 +0.722 +0.811 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg0] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg0] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.066427 1.0417 [ -3.1150 2.9998 ]
: var2: 0.074159 1.0451 [ -3.4854 3.1113 ]
: var3: 0.11230 1.1191 [ -3.0033 3.9796 ]
: var4: 0.25340 1.3586 [ -3.2294 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.089897 1.0000 [ -2.8690 2.6768 ]
: var2: -0.048622 1.0000 [ -3.1024 2.5656 ]
: var3: -0.019979 1.0000 [ -2.8162 3.4529 ]
: var4: 0.31232 1.0000 [ -1.8094 2.4786 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1:-1.4540e-09 2.0807 [ -5.7703 6.1568 ]
: var2: 4.0047e-10 0.78255 [ -2.1728 2.0976 ]
: var3:-4.5751e-10 0.47194 [ -1.3320 1.1953 ]
: var4:-5.3842e-10 0.33329 [ -0.78875 0.87706 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.15835 1.0000 [ -1.3229 6.2791 ]
: var2: 0.12263 1.0000 [ -2.5143 6.0808 ]
: var3: 0.14347 1.0000 [ -1.7961 6.9066 ]
: var4: 0.048926 1.0000 [ -2.5286 6.0560 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 4 : 4.424e-01
: 2 : Variable 3 : 3.801e-01
: 3 : Variable 2 : 2.435e-01
: 4 : Variable 1 : 1.922e-01
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.116 sec
<HEADER> BDTG : [datasetBkg0] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0175 sec
: Creating xml weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
: Creating standalone class: datasetBkg0/weights/TMVAMultiBkg0_BDTG.class.C
: TMVASignalBackground0.root:/datasetBkg0/Method_BDTG/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var1 : 2.838e-01
: 2 : var2 : 2.537e-01
: 3 : var4 : 2.384e-01
: 4 : var3 : 2.240e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg0] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0149 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg0] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.072229 0.95447 [ -2.7150 2.2789 ]
: var2: 0.026802 0.96431 [ -3.6952 2.5113 ]
: var3: 0.14087 1.0567 [ -3.3587 3.3281 ]
: var4: 0.27038 1.2168 [ -3.7913 3.5074 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg0 BDTG : 0.948
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg0 BDTG : 0.000 (0.985) 0.905 (0.987) 0.976 (0.991)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg0 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg0 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
<HEADER> DataSetInfo : [datasetBkg1] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg1] : Added class "Background"
: Add Tree TreeB1 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option *InverseBoostNegWeights* does not exist for BoostType=Grad --> change
: to new default for GradBoost *Pray*
<HEADER> DataSetFactory : [datasetBkg1] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.485 +0.637 +0.878
: var2: +0.485 +1.000 +0.752 +0.759
: var3: +0.637 +0.752 +1.000 +0.840
: var4: +0.878 +0.759 +0.840 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.377 +0.577 +0.847
: var2: +0.377 +1.000 +0.745 +0.722
: var3: +0.577 +0.745 +1.000 +0.811
: var4: +0.847 +0.722 +0.811 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg1] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg1] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.066427 1.0417 [ -3.1150 2.9998 ]
: var2: 0.37416 0.97541 [ -3.0952 3.1113 ]
: var3: 0.61230 0.96750 [ -2.3587 3.9796 ]
: var4: 0.25340 1.3586 [ -3.2294 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.15565 1.0000 [ -2.9801 2.6746 ]
: var2: 0.15984 1.0000 [ -2.9641 2.4763 ]
: var3: 0.73277 1.0000 [ -1.9228 4.1869 ]
: var4: 0.020567 1.0000 [ -2.0336 2.3391 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1:-9.2201e-10 1.9235 [ -5.3639 5.7144 ]
: var2: 1.3318e-09 0.81666 [ -2.6634 2.0151 ]
: var3:-1.1642e-10 0.52391 [ -1.7345 1.3129 ]
: var4:-6.6590e-10 0.42084 [ -0.86901 1.1757 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.14994 1.0000 [ -1.2992 6.2304 ]
: var2: 0.14446 1.0000 [ -2.1183 5.6897 ]
: var3: 0.091479 1.0000 [ -1.8403 6.2664 ]
: var4: 0.092468 1.0000 [ -2.1129 5.4495 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 4 : 4.424e-01
: 2 : Variable 1 : 1.922e-01
: 3 : Variable 2 : 1.264e-01
: 4 : Variable 3 : 7.836e-02
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.105 sec
<HEADER> BDTG : [datasetBkg1] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0182 sec
: Creating xml weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
: Creating standalone class: datasetBkg1/weights/TMVAMultiBkg1_BDTG.class.C
: TMVASignalBackground1.root:/datasetBkg1/Method_BDTG/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var1 : 2.933e-01
: 2 : var4 : 2.742e-01
: 3 : var2 : 2.180e-01
: 4 : var3 : 2.146e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg1] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0165 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg1] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.072229 0.95447 [ -2.7150 2.2789 ]
: var2: 0.32680 0.94378 [ -3.0952 3.1113 ]
: var3: 0.64087 0.96582 [ -2.3587 3.9796 ]
: var4: 0.27038 1.2168 [ -3.7913 3.5074 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg1 BDTG : 0.981
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg1 BDTG : 0.000 (1.000) 1.000 (1.000) 1.000 (1.000)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg1 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg1 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
<HEADER> DataSetInfo : [datasetBkg2] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg2] : Added class "Background"
: Add Tree TreeB2 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option *InverseBoostNegWeights* does not exist for BoostType=Grad --> change
: to new default for GradBoost *Pray*
<HEADER> DataSetFactory : [datasetBkg2] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.485 +0.637 +0.878
: var2: +0.485 +1.000 +0.752 +0.759
: var3: +0.637 +0.752 +1.000 +0.840
: var4: +0.878 +0.759 +0.840 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.656 -0.044 +0.068
: var2: -0.656 +1.000 -0.013 -0.139
: var3: -0.044 -0.013 +1.000 +0.110
: var4: +0.068 -0.139 +0.110 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg2] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg2] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.35135 0.91590 [ -2.1665 2.9998 ]
: var2: 0.72107 0.88032 [ -3.0952 3.1113 ]
: var3: 0.29319 1.1286 [ -2.3587 3.9796 ]
: var4: 0.65463 1.1780 [ -2.2913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.25774 1.0000 [ -2.0792 2.7730 ]
: var2: 0.77022 1.0000 [ -3.2294 3.1618 ]
: var3: 0.024586 1.0000 [ -2.2489 2.6129 ]
: var4: 0.45801 1.0000 [ -2.3000 2.5395 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 9.5926e-10 1.5373 [ -5.3473 5.5326 ]
: var2: 8.9407e-10 0.88855 [ -2.2471 2.6430 ]
: var3:-2.9337e-10 0.79188 [ -2.3380 1.9125 ]
: var4: 4.9826e-10 0.70386 [ -1.5948 2.1465 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.15141 1.0000 [ -1.6172 5.6829 ]
: var2: 0.17168 1.0000 [ -1.5359 5.4248 ]
: var3: 0.14179 1.0000 [ -1.8210 5.3102 ]
: var4: 0.10065 1.0000 [ -2.3131 4.5774 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 2 : 3.627e-01
: 2 : Variable 4 : 3.197e-01
: 3 : Variable 3 : 2.418e-01
: 4 : Variable 1 : 1.907e-01
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.104 sec
<HEADER> BDTG : [datasetBkg2] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0168 sec
: Creating xml weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
: Creating standalone class: datasetBkg2/weights/TMVAMultiBkg2_BDTG.class.C
: TMVASignalBackground2.root:/datasetBkg2/Method_BDTG/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var2 : 2.722e-01
: 2 : var1 : 2.666e-01
: 3 : var3 : 2.432e-01
: 4 : var4 : 2.180e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg2] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.00973 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg2] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.26457 0.87243 [ -2.7150 2.2789 ]
: var2: 0.63463 0.90997 [ -2.8854 2.3222 ]
: var3: 0.29991 1.0505 [ -2.0033 3.3281 ]
: var4: 0.49000 1.1314 [ -1.8141 3.5074 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg2 BDTG : 0.952
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg2 BDTG : 0.000 (0.936) 0.898 (0.946) 0.950 (0.958)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg2 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg2 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
========================
--- Application & create combined tree
: Booking "BDT method" of type "BDT" from datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml.
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
: Booking "BDT method" of type "BDT" from datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml.
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
: Booking "BDT method" of type "BDT" from datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml.
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
--- Select signal sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Select background 0 sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Select background 1 sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Select background 2 sample
--- Processing: 200 events
--- ... Processing event: 0
--- End of event loop: Real time 0:00:00, CP time 0.030
--- Created root file: "tmva_example_multiple_backgrounds__applied.root" containing the MVA output histograms
==> Application of readers is done! combined tree created
========================
--- maximize significance
Classifier ranges (defined by the user)
range: -1 1
range: -1 1
range: -1 1
<HEADER> FitterBase : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
: Elapsed time: 17.5 sec
======================
Efficiency : 0.93
Purity : 0.907317
True positive weights : 186
False positive weights: 19
Signal weights : 200
cutValue[0] = 0.722456;
cutValue[1] = -0.997876;
cutValue[2] = -0.999939;