Logo ROOT   6.10/09
Reference Guide
TFumiliMinimizer.cxx
Go to the documentation of this file.
1 // @(#)root/fumili:$Id$
2 // Author: L. Moneta Wed Oct 25 16:28:55 2006
3 
4 /**********************************************************************
5  * *
6  * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7  * *
8  * *
9  **********************************************************************/
10 
11 // Implementation file for class TFumiliMinimizer
12 
13 #include "TFumiliMinimizer.h"
14 #include "Math/IFunction.h"
15 #include "Math/Util.h"
16 #include "TError.h"
17 
18 #include "TFumili.h"
19 
20 #include <iostream>
21 #include <cassert>
22 #include <algorithm>
23 #include <functional>
24 
25 
26 // setting USE_FUMILI_FUNCTION will use the Derivatives provided by Fumili
27 // instead of what proided in FitUtil::EvalChi2Residual
28 // t.d.: use still standard Chi2 but replace model function
29 // with a gradient function where gradient is computed by TFumili
30 // since TFumili knows the step size can calculate it better
31 // Derivative in FUmili are very fast (1 extra call for each parameter)
32 // + 1 function evaluation
33 //
34 //#define USE_FUMILI_FUNCTION
35 #ifdef USE_FUMILI_FUNCTION
36 bool gUseFumiliFunction = true;
37 //#include "FumiliFunction.h"
38 // fit method function used in TFumiliMinimizer
39 
41 #include "Fit/LogLikelihoodFCN.h"
42 #include "Fit/Chi2FCN.h"
43 #include "TF1.h"
44 #include "TFumili.h"
45 
46 template<class MethodFunc>
47 class FumiliFunction : public ROOT::Math::FitMethodFunction {
48 
50 
51 public:
52  FumiliFunction(TFumili * fumili, const ROOT::Math::FitMethodFunction * func) :
53  ROOT::Math::FitMethodFunction(func->NDim(), func->NPoints() ),
54  fFumili(fumili),
55  fObjFunc(0)
56  {
57  fObjFunc = dynamic_cast<const MethodFunc *>(func);
58  assert(fObjFunc != 0);
59 
60  // create TF1 class from model function
61  fModFunc = new TF1("modfunc",ROOT::Math::ParamFunctor( &fObjFunc->ModelFunction() ) );
62  fFumili->SetUserFunc(fModFunc);
63  }
64 
65  ROOT::Math::FitMethodFunction::Type_t Type() const { return fObjFunc->Type(); }
66 
67  FumiliFunction * Clone() const { return new FumiliFunction(fFumili, fObjFunc); }
68 
69 
70  // recalculate data elemet using Fumili stuff
71  double DataElement(const double * /*par */, unsigned int i, double * g) const {
72 
73  // parameter values are inside TFumili
74 
75  // suppose type is bin likelihood
76  unsigned int npar = fObjFunc->NDim();
77  double y = 0;
78  double invError = 0;
79  const double *x = fObjFunc->Data().GetPoint(i,y,invError);
80  double fval = fFumili->EvalTFN(g,const_cast<double *>( x));
81  fFumili->Derivatives(g, const_cast<double *>( x));
82 
83  if ( fObjFunc->Type() == ROOT::Math::FitMethodFunction::kLogLikelihood) {
84  double logPdf = y * ROOT::Math::Util::EvalLog( fval) - fval;
85  for (unsigned int k = 0; k < npar; ++k) {
86  g[k] *= ( y/fval - 1.) ;//* pdfval;
87  }
88 
89  // std::cout << "x = " << x[0] << " logPdf = " << logPdf << " grad";
90 // for (unsigned int ipar = 0; ipar < npar; ++ipar)
91 // std::cout << g[ipar] << "\t";
92 // std::cout << std::endl;
93 
94  return logPdf;
95  }
96  else if (fObjFunc->Type() == ROOT::Math::FitMethodFunction::kLeastSquare ) {
97  double resVal = (y-fval)*invError;
98  for (unsigned int k = 0; k < npar; ++k) {
99  g[k] *= -invError;
100  }
101  return resVal;
102  }
103 
104  return 0;
105  }
106 
107 
108 private:
109 
110  double DoEval(const double *x ) const {
111  return (*fObjFunc)(x);
112  }
113 
114  TFumili * fFumili;
115  const MethodFunc * fObjFunc;
116  TF1 * fModFunc;
117 
118 };
119 #else
120 bool gUseFumiliFunction = false;
121 #endif
122 //______________________________________________________________________________
123 //
124 // TFumiliMinimizer class implementing the ROOT::Math::Minimizer interface using
125 // TFumili.
126 // This class is normally instantiates using the plug-in manager
127 // (plug-in with name Fumili or TFumili)
128 // In addition the user can choose the minimizer algorithm: Migrad (the default one), Simplex, or Minimize (combined Migrad + Simplex)
129 //
130 //__________________________________________________________________________________________
131 
132 // initialize the static instances
133 
137 
138 
140 
141 
143  fDim(0),
144  fNFree(0),
145  fMinVal(0),
146  fEdm(-1),
147  fFumili(0)
148 {
149  // Constructor for TFumiliMinimier class
150 
151  // construct with npar = 0 (by default a value of 25 is used in TFumili for allocating the arrays)
152 #ifdef USE_STATIC_TMINUIT
153  // allocate here only the first time
154  if (fgFumili == 0) fgFumili = new TFumili(0);
155  fFumili = fgFumili;
156 #else
157  if (fFumili) delete fFumili;
158  fFumili = new TFumili(0);
159  fgFumili = fFumili;
160 #endif
161 
162 }
163 
164 
166 {
167  // Destructor implementation.
168  if (fFumili) delete fFumili;
169 }
170 
172  Minimizer()
173 {
174  // Implementation of copy constructor (it is private).
175 }
176 
178 {
179  // Implementation of assignment operator (private)
180  if (this == &rhs) return *this; // time saving self-test
181  return *this;
182 }
183 
184 
185 
187  // Set the objective function to be minimized, by passing a function object implement the
188  // basic multi-dim Function interface. In this case the derivatives will be
189  // calculated by Fumili
190 
191  // Here a TFumili instance is created since only at this point we know the number of parameters
192  // needed to create TFumili
193  fDim = func.NDim();
195 
196  // for Fumili the fit method function interface is required
197  const ROOT::Math::FitMethodFunction * fcnfunc = dynamic_cast<const ROOT::Math::FitMethodFunction *>(&func);
198  if (!fcnfunc) {
199  Error("SetFunction","Wrong Fit method function type used for Fumili");
200  return;
201  }
202  // assign to the static pointer (NO Thread safety here)
203  fgFunc = const_cast<ROOT::Math::FitMethodFunction *>(fcnfunc);
204  fgGradFunc = 0;
206 
207 #ifdef USE_FUMILI_FUNCTION
208  if (gUseFumiliFunction) {
211  else if (fcnfunc->Type() == ROOT::Math::FitMethodFunction::kLeastSquare)
213  }
214 #endif
215 
216 }
217 
219  // Set the objective function to be minimized, by passing a function object implement the
220  // multi-dim gradient Function interface. In this case the function derivatives are provided
221  // by the user via this interface and there not calculated by Fumili.
222 
223  fDim = func.NDim();
225 
226  // for Fumili the fit method function interface is required
227  const ROOT::Math::FitMethodGradFunction * fcnfunc = dynamic_cast<const ROOT::Math::FitMethodGradFunction *>(&func);
228  if (!fcnfunc) {
229  Error("SetFunction","Wrong Fit method function type used for Fumili");
230  return;
231  }
232  // assign to the static pointer (NO Thread safety here)
233  fgFunc = 0;
234  fgGradFunc = const_cast<ROOT::Math::FitMethodGradFunction *>(fcnfunc);
236 
237 }
238 
239 void TFumiliMinimizer::Fcn( int & , double * g , double & f, double * x , int /* iflag */) {
240  // implementation of FCN static function used internally by TFumili.
241  // Adapt IMultiGenFunction interface to TFumili FCN static function
242  f = TFumiliMinimizer::EvaluateFCN(const_cast<double*>(x),g);
243 }
244 
245 // void TFumiliMinimizer::FcnGrad( int &, double * g, double & f, double * x , int iflag ) {
246 // // implementation of FCN static function used internally by TFumili.
247 // // Adapt IMultiGradFunction interface to TFumili FCN static function in the case of user
248 // // provided gradient.
249 // ROOT::Math::IMultiGradFunction * gFunc = dynamic_cast<ROOT::Math::IMultiGradFunction *> ( fgFunc);
250 
251 // assert(gFunc != 0);
252 // f = gFunc->operator()(x);
253 
254 // // calculates also derivatives
255 // if (iflag == 2) gFunc->Gradient(x,g);
256 // }
257 
258 double TFumiliMinimizer::EvaluateFCN(const double * x, double * grad) {
259  // function callaed to evaluate the FCN at the value x
260  // calculates also the matrices of the second derivatives of the objective function needed by FUMILI
261 
262 
263  //typedef FumiliFCNAdapter::Function Function;
264 
265 
266 
267  // reset
268 // assert(grad.size() == npar);
269 // grad.assign( npar, 0.0);
270 // hess.assign( hess.size(), 0.0);
271 
272  double sum = 0;
273  unsigned int ndata = 0;
274  unsigned int npar = 0;
275  if (fgFunc) {
276  ndata = fgFunc->NPoints();
277  npar = fgFunc->NDim();
278  fgFunc->UpdateNCalls();
279  }
280  else if (fgGradFunc) {
281  ndata = fgGradFunc->NPoints();
282  npar = fgGradFunc->NDim();
284  }
285 
286  // eventually store this matrix as static member to optimize speed
287  std::vector<double> gf(npar);
288  std::vector<double> hess(npar*(npar+1)/2);
289 
290  // reset gradients
291  for (unsigned int ipar = 0; ipar < npar; ++ipar)
292  grad[ipar] = 0;
293 
294 
295  //loop on the data points
296 //#define DEBUG
297 #ifdef DEBUG
298  std::cout << "=============================================";
299  std::cout << "par = ";
300  for (unsigned int ipar = 0; ipar < npar; ++ipar)
301  std::cout << x[ipar] << "\t";
302  std::cout << std::endl;
303  if (fgFunc) std::cout << "type " << fgFunc->Type() << std::endl;
304 #endif
305 
306 
307  // assume for now least-square
308  // since TFumili doet not use errodef I must diveide chi2 by 2
311 
312  double fval = 0;
313  for (unsigned int i = 0; i < ndata; ++i) {
314  // calculate data element and gradient
315  // DataElement returns (f-y)/s and gf is derivatives of model function multiplied by (-1/sigma)
316  if (gUseFumiliFunction) {
317  fval = fgFunc->DataElement( x, i, &gf[0]);
318  }
319  else {
320  if (fgFunc != 0)
321  fval = fgFunc->DataElement(x, i, &gf[0]);
322  else
323  fval = fgGradFunc->DataElement(x, i, &gf[0]);
324  }
325 
326  // t.b.d should protect for bad values of fval
327  sum += fval*fval;
328 
329  // to be check (TFumili uses a factor of 1/2 for chi2)
330 
331  for (unsigned int j = 0; j < npar; ++j) {
332  grad[j] += fval * gf[j];
333  for (unsigned int k = j; k < npar; ++ k) {
334  int idx = j + k*(k+1)/2;
335  hess[idx] += gf[j] * gf[k];
336  }
337  }
338  }
339  }
342 
343 
344 
345  double fval = 0;
346 
347  //std::cout << "\t x " << x[0] << " " << x[1] << " " << x[2] << std::endl;
348 
349  for (unsigned int i = 0; i < ndata; ++i) {
350 
351  if (gUseFumiliFunction) {
352  fval = fgFunc->DataElement( x, i, &gf[0]);
353  }
354  else {
355  // calculate data element and gradient
356  if (fgFunc != 0)
357  fval = fgFunc->DataElement(x, i, &gf[0]);
358  else
359  fval = fgGradFunc->DataElement(x, i, &gf[0]);
360  }
361 
362  // protect for small values of fval
363  // std::cout << i << " " << fval << " log " << " grad " << gf[0] << " " << gf[1] << " " << gf[2] << std::endl;
364 // sum -= ROOT::Math::Util::EvalLog(fval);
365  sum -= fval;
366 
367  for (unsigned int j = 0; j < npar; ++j) {
368  double gfj = gf[j];// / fval;
369  grad[j] -= gfj;
370  for (unsigned int k = j; k < npar; ++ k) {
371  int idx = j + k*(k+1)/2;
372  hess[idx] += gfj * gf[k];// / (fval );
373  }
374  }
375  }
376  }
377  else {
378  Error("EvaluateFCN"," type of fit method is not supported, it must be chi2 or log-likelihood");
379  }
380 
381  // now TFumili excludes fixed prameter in second-derivative matrix
382  // ned to get them using the static instance of TFumili
383  double * zmatrix = fgFumili->GetZ();
384  double * pl0 = fgFumili->GetPL0(); // parameter limits
385  assert(zmatrix != 0);
386  assert(pl0 != 0);
387  unsigned int k = 0;
388  unsigned int l = 0;
389  for (unsigned int i = 0; i < npar; ++i) {
390  for (unsigned int j = 0; j <= i; ++j) {
391  if (pl0[i] > 0 && pl0[j] > 0) { // only for non-fixed parameters
392  zmatrix[l++] = hess[k];
393  }
394  k++;
395  }
396  }
397 
398 #ifdef DEBUG
399  std::cout << "FCN value " << sum << " grad ";
400  for (unsigned int ipar = 0; ipar < npar; ++ipar)
401  std::cout << grad[ipar] << "\t";
402  std::cout << std::endl << std::endl;
403 #endif
404 
405 
406  return 0.5*sum; // fumili multiply then by 2
407 
408 }
409 
410 
411 
412 bool TFumiliMinimizer::SetVariable(unsigned int ivar, const std::string & name, double val, double step) {
413  // set a free variable.
414  if (fFumili == 0) {
415  Error("SetVariableValue","invalid TFumili pointer. Set function first ");
416  return false;
417  }
418 #ifdef DEBUG
419  std::cout << "set variable " << ivar << " " << name << " value " << val << " step " << step << std::endl;
420 #endif
421 
422  int ierr = fFumili->SetParameter(ivar , name.c_str(), val, step, 0., 0. );
423  if (ierr) {
424  Error("SetVariable","Error for parameter %d ",ivar);
425  return false;
426  }
427  return true;
428 }
429 
430 bool TFumiliMinimizer::SetLimitedVariable(unsigned int ivar, const std::string & name, double val, double step, double lower, double upper) {
431  // set a limited variable.
432  if (fFumili == 0) {
433  Error("SetVariableValue","invalid TFumili pointer. Set function first ");
434  return false;
435  }
436 #ifdef DEBUG
437  std::cout << "set limited variable " << ivar << " " << name << " value " << val << " step " << step << std::endl;
438 #endif
439  int ierr = fFumili->SetParameter(ivar, name.c_str(), val, step, lower, upper );
440  if (ierr) {
441  Error("SetLimitedVariable","Error for parameter %d ",ivar);
442  return false;
443  }
444  return true;
445 }
446 #ifdef LATER
447 bool Fumili2Minimizer::SetLowerLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double lower ) {
448  // add a lower bounded variable as a double bound one, using a very large number for the upper limit
449  double s = val-lower;
450  double upper = s*1.0E15;
451  if (s != 0) upper = 1.0E15;
452  return SetLimitedVariable(ivar, name, val, step, lower,upper);
453 }
454 #endif
455 
456 
457 bool TFumiliMinimizer::SetFixedVariable(unsigned int ivar, const std::string & name, double val) {
458  // set a fixed variable.
459  if (fFumili == 0) {
460  Error("SetVariableValue","invalid TFumili pointer. Set function first ");
461  return false;
462  }
463 
464 
465  int ierr = fFumili->SetParameter(ivar, name.c_str(), val, 0., val, val );
466  fFumili->FixParameter(ivar);
467 
468 #ifdef DEBUG
469  std::cout << "Fix variable " << ivar << " " << name << " value " << std::endl;
470 #endif
471 
472  if (ierr) {
473  Error("SetFixedVariable","Error for parameter %d ",ivar);
474  return false;
475  }
476  return true;
477 }
478 
479 bool TFumiliMinimizer::SetVariableValue(unsigned int ivar, double val) {
480  // set the variable value
481  if (fFumili == 0) {
482  Error("SetVariableValue","invalid TFumili pointer. Set function first ");
483  return false;
484  }
485  TString name = fFumili->GetParName(ivar);
486  double oldval, verr, vlow, vhigh = 0;
487  int ierr = fFumili->GetParameter( ivar, &name[0], oldval, verr, vlow, vhigh);
488  if (ierr) {
489  Error("SetVariableValue","Error for parameter %d ",ivar);
490  return false;
491  }
492 #ifdef DEBUG
493  std::cout << "set variable " << ivar << " " << name << " value "
494  << val << " step " << verr << std::endl;
495 #endif
496 
497  ierr = fFumili->SetParameter(ivar , name , val, verr, vlow, vhigh );
498  if (ierr) {
499  Error("SetVariableValue","Error for parameter %d ",ivar);
500  return false;
501  }
502  return true;
503 }
504 
506  // perform the minimization using the algorithm chosen previously by the user
507  // By default Migrad is used.
508  // Return true if the found minimum is valid and update internal chached values of
509  // minimum values, errors and covariance matrix.
510 
511  if (fFumili == 0) {
512  Error("SetVariableValue","invalid TFumili pointer. Set function first ");
513  return false;
514  }
515 
516  // need to set static instance to be used when calling FCN
517  fgFumili = fFumili;
518 
519 
520  double arglist[10];
521 
522  // error cannot be set in TFumili (always the same)
523 // arglist[0] = ErrorUp();
524 // fFumili->ExecuteCommand("SET Err",arglist,1);
525 
526  int printlevel = PrintLevel();
527  // not implemented in TFumili yet
528  //arglist[0] = printlevel - 1;
529  //fFumili->ExecuteCommand("SET PRINT",arglist,1,ierr);
530 
531  // suppress warning in case Printlevel() == 0
532  if (printlevel == 0) fFumili->ExecuteCommand("SET NOW",arglist,0);
533  else fFumili->ExecuteCommand("SET WAR",arglist,0);
534 
535 
536  // minimize: use ExecuteCommand instead of Minimize to set tolerance and maxiter
537 
538  arglist[0] = MaxFunctionCalls();
539  arglist[1] = Tolerance();
540 
541  if (printlevel > 0)
542  std::cout << "Minimize using TFumili with tolerance = " << Tolerance()
543  << " max calls " << MaxFunctionCalls() << std::endl;
544 
545  int iret = fFumili->ExecuteCommand("MIGRAD",arglist,2);
546  fStatus = iret;
547  //int iret = fgFumili->Minimize();
548 
549  // Hesse and IMP not implemented
550 // // run improved if needed
551 // if (ierr == 0 && fType == ROOT::Fumili::kMigradImproved)
552 // fFumili->mnexcm("IMPROVE",arglist,1,ierr);
553 
554 // // check if Hesse needs to be run
555 // if (ierr == 0 && IsValidError() ) {
556 // fFumili->mnexcm("HESSE",arglist,1,ierr);
557 // }
558 
559 
560  int ntot;
561  int nfree;
562  double errdef = 0; // err def is not used by Fumili
563  fFumili->GetStats(fMinVal,fEdm,errdef,nfree,ntot);
564 
565  if (printlevel > 0)
566  fFumili->PrintResults(printlevel,fMinVal);
567 
568 
569  assert (static_cast<unsigned int>(ntot) == fDim);
570  assert( nfree == fFumili->GetNumberFreeParameters() );
571  fNFree = nfree;
572 
573 
574  // get parameter values and correlation matrix
575  // fumili stores only lower part of diagonal matrix of the free parameters
576  fParams.resize( fDim);
577  fErrors.resize( fDim);
578  fCovar.resize(fDim*fDim);
579  const double * cv = fFumili->GetCovarianceMatrix();
580  unsigned int l = 0;
581  for (unsigned int i = 0; i < fDim; ++i) {
582  fParams[i] = fFumili->GetParameter( i );
583  fErrors[i] = fFumili->GetParError( i );
584 
585  if ( !fFumili->IsFixed(i) ) {
586  for (unsigned int j = 0; j <=i ; ++j) {
587  if ( !fFumili->IsFixed(j) ) {
588  fCovar[i*fDim + j] = cv[l];
589  fCovar[j*fDim + i] = fCovar[i*fDim + j];
590  l++;
591  }
592  }
593  }
594  }
595 
596  return (iret==0) ? true : false;
597 }
598 
599 
600 // } // end namespace Fit
601 
602 // } // end namespace ROOT
603 
const int ndata
virtual bool SetVariable(unsigned int ivar, const std::string &name, double val, double step)
set free variable
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Definition: IFunction.h:330
virtual Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const
return global fit parameters amin : chisquare edm : estimated distance to minimum errdef nvpar : numb...
Definition: TFumili.cxx:912
static long int sum(long int i)
Definition: Factory.cxx:2162
virtual void UpdateNCalls() const
update number of calls
Type_t
enumeration specyfing the possible fit method types
virtual Double_t * GetCovarianceMatrix() const
return a pointer to the covariance matrix
Definition: TFumili.cxx:791
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
bool gUseFumiliFunction
virtual void FixParameter(Int_t ipar)
Fixes parameter number ipar.
Definition: TFumili.cxx:781
virtual Double_t GetParameter(Int_t ipar) const
return current value of parameter ipar
Definition: TFumili.cxx:843
Basic string class.
Definition: TString.h:129
virtual unsigned int NPoints() const
return the number of data points used in evaluating the function
static double EvaluateFCN(const double *x, double *g)
implementation of FCN for Fumili when user provided gradient is used
virtual void PrintResults(Int_t k, Double_t p) const
Prints fit results.
Definition: TFumili.cxx:1509
Double_t * GetPL0() const
Definition: TFumili.h:103
TFumiliMinimizer class: minimizer implementation based on TFumili.
static ROOT::Math::FitMethodFunction * fgFunc
int PrintLevel() const
minimizer configuration parameters
Definition: Minimizer.h:411
TFumiliMinimizer(int dummy=0)
Default constructor (an argument is needed by plug-in manager)
virtual Int_t SetParameter(Int_t ipar, const char *parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh)
Sets for prameter number ipar initial parameter value, name parname, initial error verr and limits vl...
Definition: TFumili.cxx:1672
Double_t x[n]
Definition: legend1.C:17
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
virtual const char * GetParName(Int_t ipar) const
return name of parameter ipar
Definition: TFumili.cxx:880
int printlevel
std::vector< double > fParams
virtual Type_t Type() const
return the type of method, override if needed
virtual bool SetFixedVariable(unsigned int, const std::string &, double)
set fixed variable (override if minimizer supports them )
virtual bool Minimize()
method to perform the minimization
void Error(const char *location, const char *msgfmt,...)
double Tolerance() const
absolute tolerance
Definition: Minimizer.h:420
virtual Double_t GetParError(Int_t ipar) const
return error of parameter ipar
Definition: TFumili.cxx:834
const int NPoints
Definition: testNdimFit.cxx:35
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
Chi2FCN class for binnned fits using the least square methods.
Definition: Chi2FCN.h:58
virtual bool SetLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double, double)
set upper/lower limited variable (override if minimizer supports them )
RooCmdArg Minimizer(const char *type, const char *alg=0)
std::vector< double > fCovar
virtual Bool_t IsFixed(Int_t ipar) const
return kTRUE if parameter ipar is fixed, kFALSE othersise)
Definition: TFumili.cxx:1076
TLine * l
Definition: textangle.C:4
virtual Int_t GetNumberFreeParameters() const
return the number of free parameters
Definition: TFumili.cxx:822
FunctionType::BaseFunc BaseFunction
virtual unsigned int NDim() const
Number of dimension (parameters) .
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
Execute MINUIT commands.
Definition: TFumili.cxx:394
~TFumiliMinimizer()
Destructor (no operations)
Double_t * GetZ() const
Definition: TFumili.h:110
#define ClassImp(name)
Definition: Rtypes.h:336
double f(double x)
FitMethodFunction class Interface for objective functions (like chi2 and likelihood used in the fit) ...
Definition: Fitter.h:40
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)
set the function to minimize
Double_t y[n]
Definition: legend1.C:17
double func(double *x, double *p)
Definition: stressTF1.cxx:213
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
To set the address of the minimization objective function called by the native compiler (see function...
Namespace for new Math classes and functions.
unsigned int MaxFunctionCalls() const
max number of function calls
Definition: Minimizer.h:414
double EvalLog(double x)
safe evaluation of log(x) with a protections against negative or zero argument to the log smooth line...
Definition: Util.h:52
static ROOT::Math::FitMethodGradFunction * fgGradFunc
static TFumili * fgFumili
1-Dim function class
Definition: TF1.h:150
std::vector< double > fErrors
TFumiliMinimizer & operator=(const TFumiliMinimizer &rhs)
Assignment operator.
Param Functor class for Multidimensional functions.
Definition: ParamFunctor.h:209
void SetParNumber(Int_t ParNum)
Definition: TFumili.h:120
unsigned int fNFree
virtual bool SetVariableValue(unsigned int ivar, double val)
set the value of an existing variable
static void Fcn(int &, double *, double &f, double *, int)
implementation of FCN for Fumili
virtual double DataElement(const double *x, unsigned int i, double *g=0) const =0
method returning the data i-th contribution to the fit objective function For example the residual fo...
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.
BasicFitMethodFunction< ROOT::Math::IMultiGenFunction > FitMethodFunction
Definition: Fitter.h:40