Logo ROOT   6.10/09
Reference Guide
TBinomialEfficiencyFitter.cxx
Go to the documentation of this file.
1 // @(#)root/hist:$Id$
2 // Author: Frank Filthaut, Rene Brun 30/05/2007
3 
4 /*************************************************************************
5  * Copyright (C) 1995-2007, Rene Brun and Fons Rademakers. *
6  * All rights reserved. *
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. *
9  * For the list of contributors see $ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11 
12 /** \class TBinomialEfficiencyFitter
13  \ingroup Hist
14  \brief Binomial fitter for the division of two histograms.
15 
16 Use when you need to calculate a selection's efficiency from two histograms,
17 one containing all entries, and one containing the subset of these entries
18 that pass the selection, and when you have a parametrization available for
19 the efficiency as a function of the variable(s) under consideration.
20 
21 A very common problem when estimating efficiencies is that of error estimation:
22 when no other information is available than the total number of events N and
23 the selected number n, the best estimate for the selection efficiency p is n/N.
24 Standard binomial statistics dictates that the uncertainty (this presupposes
25 sufficiently high statistics that an approximation by a normal distribution is
26 reasonable) on p, given N, is
27 \f[
28  \sqrt{\frac{p(1-p)}{N}}
29 \f]
30 However, when p is estimated as n/N, fluctuations from the true p to its
31 estimate become important, especially for low numbers of events, and giving
32 rise to biased results.
33 
34 When fitting a parametrized efficiency, these problems can largely be overcome,
35 as a hypothesized true efficiency is available by construction. Even so, simply
36 using the corresponding uncertainty still presupposes that Gaussian errors
37 yields a reasonable approximation. When using, instead of binned efficiency
38 histograms, the original numerator and denominator histograms, a binned maximum
39 likelihood can be constructed as the product of bin-by-bin binomial probabilities
40 to select n out of N events. Assuming that a correct parametrization of the
41 efficiency is provided, this construction in general yields less biased results
42 (and is much less sensitive to binning details).
43 
44 A generic use of this method is given below (note that the method works for 2D
45 and 3D histograms as well):
46 
47 ~~~ {.cpp}
48  {
49  TH1* denominator; // denominator histogram
50  TH1* numerator; // corresponding numerator histogram
51  TF1* eff; // efficiency parametrization
52  .... // set step sizes and initial parameter
53  .... // values for the fit function
54  .... // possibly also set ranges, see TF1::SetRange()
55  TBinomialEfficiencyFitter* f = new TBinomialEfficiencyFitter(
56  numerator, denominator);
57  Int_t status = f->Fit(eff, "I");
58  if (status == 0) {
59  // if the fit was successful, display bin-by-bin efficiencies
60  // as well as the result of the fit
61  numerator->Sumw2();
62  TH1* hEff = dynamic_cast<TH1*>(numerator->Clone("heff"));
63  hEff->Divide(hEff, denominator, 1.0, 1.0, "B");
64  hEff->Draw("E");
65  eff->Draw("same");
66  }
67  }
68 ~~~
69 
70 Note that this method cannot be expected to yield reliable results when using
71 weighted histograms (because the likelihood computation will be incorrect).
72 
73 */
74 
76 
77 #include "TMath.h"
78 #include "TPluginManager.h"
79 #include "TROOT.h"
80 #include "TH1.h"
81 #include "TF1.h"
82 #include "TF2.h"
83 #include "TF3.h"
84 #include "Fit/FitConfig.h"
85 #include "Fit/Fitter.h"
86 #include "TFitResult.h"
87 #include "Math/Functor.h"
88 
89 #include <limits>
90 
91 
93 
95 
96 
97 ////////////////////////////////////////////////////////////////////////////////
98 /// default constructor
99 
101  fNumerator = 0;
102  fDenominator = 0;
103  fFunction = 0;
104  fFitDone = kFALSE;
105  fAverage = kFALSE;
106  fRange = kFALSE;
107  fEpsilon = kDefaultEpsilon;
108  fFitter = 0;
109 }
110 
111 ////////////////////////////////////////////////////////////////////////////////
112 /// Constructor.
113 ///
114 /// Note that no objects are copied, so it is up to the user to ensure that the
115 /// histogram pointers remain valid.
116 ///
117 /// Both histograms need to be "consistent". This is not checked here, but in
118 /// TBinomialEfficiencyFitter::Fit().
119 
120 TBinomialEfficiencyFitter::TBinomialEfficiencyFitter(const TH1 *numerator, const TH1 *denominator) {
122  fFunction = 0;
123  fFitter = 0;
124  Set(numerator,denominator);
125 }
126 
127 ////////////////////////////////////////////////////////////////////////////////
128 /// destructor
129 
131  if (fFitter) delete fFitter;
132  fFitter = 0;
133 }
134 
135 ////////////////////////////////////////////////////////////////////////////////
136 /// Initialize with a new set of inputs.
137 
138 void TBinomialEfficiencyFitter::Set(const TH1 *numerator, const TH1 *denominator)
139 {
140  fNumerator = (TH1*)numerator;
141  fDenominator = (TH1*)denominator;
142 
143  fFitDone = kFALSE;
144  fAverage = kFALSE;
145  fRange = kFALSE;
146 }
147 
148 ////////////////////////////////////////////////////////////////////////////////
149 /// Set the required integration precision, see TF1::Integral()
150 
152 {
153  fEpsilon = epsilon;
154 }
155 
156 ////////////////////////////////////////////////////////////////////////////////
157 /// Provide access to the underlying fitter object.
158 /// This may be useful e.g. for the retrieval of additional information (such
159 /// as the output covariance matrix of the fit).
160 
162 {
163  if (!fFitter) fFitter = new ROOT::Fit::Fitter();
164  return fFitter;
165 
166 }
167 
168 ////////////////////////////////////////////////////////////////////////////////
169 /// Carry out the fit of the given function to the given histograms.
170 ///
171 /// If option "I" is used, the fit function will be averaged over the
172 /// bin (the default is to evaluate it simply at the bin center).
173 ///
174 /// If option "R" is used, the fit range will be taken from the fit
175 /// function (the default is to use the entire histogram).
176 ///
177 /// If option "S" a TFitResult object is returned and it can be used to obtain
178 /// additional fit information, like covariance or correlation matrix.
179 ///
180 /// Note that all parameter values, limits, and step sizes are copied
181 /// from the input fit function f1 (so they should be set before calling
182 /// this method. This is particularly relevant for the step sizes, taken
183 /// to be the "error" set on input, as a null step size usually fixes the
184 /// corresponding parameter. That is protected against, but in such cases
185 /// an arbitrary starting step size will be used, and the reliability of
186 /// the fit should be questioned). If parameters are to be fixed, this
187 /// should be done by specifying non-null parameter limits, with lower
188 /// limits larger than upper limits.
189 ///
190 /// On output, f1 contains the fitted parameters and errors, as well as
191 /// the number of degrees of freedom, and the goodness-of-fit estimator
192 /// as given by S. Baker and R. Cousins, Nucl. Instr. Meth. A221 (1984) 437.
193 
195 {
196  TString opt = option;
197  opt.ToUpper();
198  fAverage = opt.Contains("I");
199  fRange = opt.Contains("R");
200  Bool_t verbose = opt.Contains("V");
201  Bool_t quiet = opt.Contains("Q");
202  Bool_t saveResult = opt.Contains("S");
203  if (!f1) return -1;
204  fFunction = (TF1*)f1;
205  Int_t i, npar;
206  npar = f1->GetNpar();
207  if (npar <= 0) {
208  Error("Fit", "function %s has illegal number of parameters = %d",
209  f1->GetName(), npar);
210  return -3;
211  }
212 
213  // Check that function has same dimension as histogram
214  if (!fNumerator || !fDenominator) {
215  Error("Fit","No numerator or denominator histograms set");
216  return -5;
217  }
218  if (f1->GetNdim() != fNumerator->GetDimension()) {
219  Error("Fit","function %s dimension, %d, does not match histogram dimension, %d",
220  f1->GetName(), f1->GetNdim(), fNumerator->GetDimension());
221  return -4;
222  }
223  // Check that the numbers of bins for the histograms match
225  (f1->GetNdim() > 1 && fNumerator->GetNbinsY() != fDenominator->GetNbinsY()) ||
226  (f1->GetNdim() > 2 && fNumerator->GetNbinsZ() != fDenominator->GetNbinsZ())) {
227  Error("Fit", "numerator and denominator histograms do not have identical numbers of bins");
228  return -6;
229  }
230 
231  // initialize the fitter
232 
233  if (!fFitter) {
234  fFitter = new ROOT::Fit::Fitter();
235  }
236 
237 
238  std::vector<ROOT::Fit::ParameterSettings> & parameters = fFitter->Config().ParamsSettings();
239  parameters.reserve(npar);
240  for (i = 0; i < npar; i++) {
241 
242  // assign an ARBITRARY starting error to ensure the parameter won't be fixed!
243  Double_t we = f1->GetParError(i);
244  if (we <= 0) we = 0.3*TMath::Abs(f1->GetParameter(i));
245  if (we == 0) we = 0.01;
246 
247  parameters.push_back(ROOT::Fit::ParameterSettings(f1->GetParName(i), f1->GetParameter(i), we) );
248 
249  Double_t plow, pup;
250  f1->GetParLimits(i,plow,pup);
251  if (plow*pup != 0 && plow >= pup) { // this is a limitation - cannot fix a parameter to zero value
252  parameters.back().Fix();
253  }
254  else if (plow < pup ) {
255  parameters.back().SetLimits(plow,pup);
256  }
257  }
258 
259  // fcn must be set after setting the parameters
261  fFitter->SetFCN(static_cast<ROOT::Math::IMultiGenFunction&>(fcnFunction));
262 
263 
264  // in case default value of 1.0 is used
265  if (fFitter->Config().MinimizerOptions().ErrorDef() == 1.0 ) {
267  }
268 
269  if (verbose) {
271  }
272  else if (quiet) {
274  }
275 
276 
277 
278  // perform the actual fit
279 
280  fFitDone = kTRUE;
281  Bool_t status = fFitter->FitFCN();
282  if ( !status && !quiet)
283  Warning("Fit","Abnormal termination of minimization.");
284 
285 
286  //Store fit results in fitFunction
287  const ROOT::Fit::FitResult & fitResult = fFitter->Result();
288  if (!fitResult.IsEmpty() ) {
289  // set in f1 the result of the fit
290  f1->SetNDF(fitResult.Ndf() );
291 
292  //f1->SetNumberFitPoints(...); // this is set in ComputeFCN
293 
294  f1->SetParameters( &(fitResult.Parameters().front()) );
295  if ( int( fitResult.Errors().size()) >= f1->GetNpar() )
296  f1->SetParErrors( &(fitResult.Errors().front()) );
297 
298  f1->SetChisquare(2.*fitResult.MinFcnValue()); // store goodness of fit (Baker&Cousins)
299  f1->SetNDF(f1->GetNumberFitPoints()- fitResult.NFreeParameters());
300  Info("result"," chi2 %f ndf %d ",2.*fitResult.MinFcnValue(), fitResult.Ndf() );
301 
302  }
303  // create a new result class if needed
304  if (saveResult) {
305  TFitResult* fr = new TFitResult(fitResult);
306  TString name = TString::Format("TBinomialEfficiencyFitter_result_of_%s",f1->GetName() );
307  fr->SetName(name); fr->SetTitle(name);
308  return TFitResultPtr(fr);
309  }
310  else {
311  return TFitResultPtr(fitResult.Status() );
312  }
313 
314 }
315 
316 ////////////////////////////////////////////////////////////////////////////////
317 /// Compute the likelihood.
318 
320 {
321  int nDim = fDenominator->GetDimension();
322 
323  int xlowbin = fDenominator->GetXaxis()->GetFirst();
324  int xhighbin = fDenominator->GetXaxis()->GetLast();
325  int ylowbin = 0, yhighbin = 0, zlowbin = 0, zhighbin = 0;
326  if (nDim > 1) {
327  ylowbin = fDenominator->GetYaxis()->GetFirst();
328  yhighbin = fDenominator->GetYaxis()->GetLast();
329  if (nDim > 2) {
330  zlowbin = fDenominator->GetZaxis()->GetFirst();
331  zhighbin = fDenominator->GetZaxis()->GetLast();
332  }
333  }
334 
335  fFunction->SetParameters(par);
336 
337  if (fRange) {
338  double xmin, xmax, ymin, ymax, zmin, zmax;
339 
340  // This way to ensure that a minimum range chosen exactly at a
341  // bin boundary is far from elegant, but is hopefully adequate.
342 
343  if (nDim == 1) {
344  fFunction->GetRange(xmin, xmax);
345  xlowbin = fDenominator->GetXaxis()->FindBin(xmin);
346  xhighbin = fDenominator->GetXaxis()->FindBin(xmax);
347  } else if (nDim == 2) {
348  fFunction->GetRange(xmin, ymin, xmax, ymax);
349  xlowbin = fDenominator->GetXaxis()->FindBin(xmin);
350  xhighbin = fDenominator->GetXaxis()->FindBin(xmax);
351  ylowbin = fDenominator->GetYaxis()->FindBin(ymin);
352  yhighbin = fDenominator->GetYaxis()->FindBin(ymax);
353  } else if (nDim == 3) {
354  fFunction->GetRange(xmin, ymin, zmin, xmax, ymax, zmax);
355  xlowbin = fDenominator->GetXaxis()->FindBin(xmin);
356  xhighbin = fDenominator->GetXaxis()->FindBin(xmax);
357  ylowbin = fDenominator->GetYaxis()->FindBin(ymin);
358  yhighbin = fDenominator->GetYaxis()->FindBin(ymax);
359  zlowbin = fDenominator->GetZaxis()->FindBin(zmin);
360  zhighbin = fDenominator->GetZaxis()->FindBin(zmax);
361  }
362  }
363 
364  // The coding below is perhaps somewhat awkward -- but it is done
365  // so that 1D, 2D, and 3D cases can be covered in the same loops.
366 
367  f = 0.;
368 
369  Int_t npoints = 0;
370  Double_t nmax = 0;
371  for (int xbin = xlowbin; xbin <= xhighbin; ++xbin) {
372 
373  // compute the bin edges
374  Double_t xlow = fDenominator->GetXaxis()->GetBinLowEdge(xbin);
375  Double_t xup = fDenominator->GetXaxis()->GetBinLowEdge(xbin+1);
376 
377  for (int ybin = ylowbin; ybin <= yhighbin; ++ybin) {
378 
379  // compute the bin edges (if applicable)
380  Double_t ylow = (nDim > 1) ? fDenominator->GetYaxis()->GetBinLowEdge(ybin) : 0;
381  Double_t yup = (nDim > 1) ? fDenominator->GetYaxis()->GetBinLowEdge(ybin+1) : 0;
382 
383  for (int zbin = zlowbin; zbin <= zhighbin; ++zbin) {
384 
385  // compute the bin edges (if applicable)
386  Double_t zlow = (nDim > 2) ? fDenominator->GetZaxis()->GetBinLowEdge(zbin) : 0;
387  Double_t zup = (nDim > 2) ? fDenominator->GetZaxis()->GetBinLowEdge(zbin+1) : 0;
388 
389  int bin = fDenominator->GetBin(xbin, ybin, zbin);
390  Double_t nDen = fDenominator->GetBinContent(bin);
391  Double_t nNum = fNumerator->GetBinContent(bin);
392 
393  // count maximum value to use in the likelihood for inf
394  // i.e. a number much larger than the other terms
395  if (nDen> nmax) nmax = nDen;
396  if (nDen <= 0.) continue;
397  npoints++;
398 
399  // mu is the average of the function over the bin OR
400  // the function evaluated at the bin centre
401  // As yet, there is nothing to prevent mu from being
402  // outside the range <0,1> !!
403 
404  Double_t mu = 0;
405  switch (nDim) {
406  case 1:
407  mu = (fAverage) ?
408  fFunction->Integral(xlow, xup, fEpsilon)
409  / (xup-xlow) :
411  break;
412  case 2:
413  {
414  mu = (fAverage) ?
415  ((TF2*)fFunction)->Integral(xlow, xup, ylow, yup, fEpsilon)
416  / ((xup-xlow)*(yup-ylow)) :
419  }
420  break;
421  case 3:
422  {
423  mu = (fAverage) ?
424  ((TF3*)fFunction)->Integral(xlow, xup, ylow, yup, zlow, zup, fEpsilon)
425  / ((xup-xlow)*(yup-ylow)*(zup-zlow)) :
429  }
430  }
431 
432  // binomial formula (forgetting about the factorials)
433  if (nNum != 0.) {
434  if (mu > 0.)
435  f -= nNum * TMath::Log(mu*nDen/nNum);
436  else
437  f -= nmax * -1E30; // crossing our fingers
438  }
439  if (nDen - nNum != 0.) {
440  if (1. - mu > 0.)
441  f -= (nDen - nNum) * TMath::Log((1. - mu)*nDen/(nDen-nNum));
442  else
443  f -= nmax * -1E30; // crossing our fingers
444  }
445  }
446  }
447  }
448 
449  fFunction->SetNumberFitPoints(npoints);
450 }
451 
Double_t EvaluateFCN(const Double_t *par)
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
double par[1]
Definition: unuranDistr.cxx:38
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:588
float xmin
Definition: THbookFile.cxx:93
void SetPrintLevel(int level)
set print level
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition: TH1.cxx:8253
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:847
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition: TAxis.cxx:444
Double_t Log(Double_t x)
Definition: TMath.h:649
const char Option_t
Definition: RtypesCore.h:62
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition: TAxis.cxx:504
float ymin
Definition: THbookFile.cxx:93
const std::vector< double > & Errors() const
parameter errors (return st::vector)
Definition: FitResult.h:170
Documentation for class Functor class.
Definition: Functor.h:392
Binomial fitter for the division of two histograms.
virtual ~TBinomialEfficiencyFitter()
destructor
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition: TNamed.cxx:131
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4639
bool FitFCN(unsigned int npar, Function &fcn, const double *params=0, unsigned int dataSize=0, bool chi2fit=false)
Fit using the a generic FCN function as a C++ callable object implementing double () (const double *)...
Definition: Fitter.h:518
void ToUpper()
Change string to upper case.
Definition: TString.cxx:1112
virtual Int_t GetNbinsZ() const
Definition: TH1.h:279
unsigned int Ndf() const
Number of degree of freedom.
Definition: FitResult.h:164
Basic string class.
Definition: TString.h:129
virtual void SetNumberFitPoints(Int_t npfits)
Definition: TF1.h:568
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
void ComputeFCN(Double_t &f, const Double_t *par)
Compute the likelihood.
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
Definition: TF1.cxx:1656
double MinFcnValue() const
Return value of the objective function (chi2 or likelihood) used in the fit.
Definition: FitResult.h:121
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition: TF1.cxx:2309
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
Definition: FitConfig.h:138
void SetErrorDef(double err)
set error def
Short_t Abs(Short_t d)
Definition: TMathBase.h:108
const FitResult & Result() const
get fit result
Definition: Fitter.h:337
virtual Int_t GetDimension() const
Definition: TH1.h:263
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
Definition: TString.cxx:2345
void Set(const TH1 *numerator, const TH1 *denominator)
Initialize with a new set of inputs.
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O...
Definition: TFitResult.h:30
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition: TAxis.cxx:464
TBinomialEfficiencyFitter()
default constructor
virtual Int_t GetNdim() const
Definition: TF1.h:439
const FitConfig & Config() const
access to the fit configuration (const method)
Definition: Fitter.h:365
virtual const char * GetParName(Int_t ipar) const
Definition: TF1.h:483
void SetPrecision(Double_t epsilon)
Set the required integration precision, see TF1::Integral()
virtual void SetChisquare(Double_t chi2)
Definition: TF1.h:556
float ymax
Definition: THbookFile.cxx:93
unsigned int NFreeParameters() const
get total number of free parameters
Definition: FitResult.h:135
Int_t GetLast() const
Return last bin on the axis i.e.
Definition: TAxis.cxx:455
virtual Int_t GetNumberFitPoints() const
Definition: TF1.h:457
A 3-Dim function with parameters.
Definition: TF3.h:28
Fitter class, entry point for performing all type of fits.
Definition: Fitter.h:77
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Definition: TFitResultPtr.h:31
const std::vector< ROOT::Fit::ParameterSettings > & ParamsSettings() const
get the vector of parameter settings (const method)
Definition: FitConfig.h:84
bool verbose
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:873
TAxis * GetYaxis()
Definition: TH1.h:301
float xmax
Definition: THbookFile.cxx:93
int Status() const
minimizer status code
Definition: FitResult.h:138
A 2-Dim function with parameters.
Definition: TF2.h:29
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH1.cxx:4541
REAL epsilon
Definition: triangle.c:617
constexpr Double_t E()
Definition: TMath.h:74
const Bool_t kFALSE
Definition: RtypesCore.h:92
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition: TAxis.cxx:279
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition: TF1.cxx:1197
class containg the result of the fit and all the related information (fitted parameter values...
Definition: FitResult.h:48
#define ClassImp(name)
Definition: Rtypes.h:336
double f(double x)
double Double_t
Definition: RtypesCore.h:55
const std::vector< double > & Parameters() const
parameter values (return std::vector)
Definition: FitResult.h:175
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:572
The TH1 histogram class.
Definition: TH1.h:56
TAxis * GetZaxis()
Definition: TH1.h:302
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
Definition: FitResult.h:118
bool SetFCN(unsigned int npar, Function &fcn, const double *params=0, unsigned int dataSize=0, bool chi2fit=false)
Set a generic FCN function as a C++ callable object implementing double () (const double *) Note that...
Definition: Fitter.h:523
virtual Int_t GetNpar() const
Definition: TF1.h:435
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
Definition: TF1.cxx:1666
TFitResultPtr Fit(TF1 *f1, Option_t *option="")
Carry out the fit of the given function to the given histograms.
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
Definition: TF1.cxx:3253
virtual Double_t GetParameter(Int_t ipar) const
Definition: TF1.h:466
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition: TF1.cxx:2012
1-Dim function class
Definition: TF1.h:150
double ErrorDef() const
error definition
TF1 * f1
Definition: legend1.C:11
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
Definition: TF1.cxx:3188
ROOT::Fit::Fitter * GetFitter()
Provide access to the underlying fitter object.
virtual Int_t GetNbinsX() const
Definition: TH1.h:277
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition: TNamed.cxx:155
const Bool_t kTRUE
Definition: RtypesCore.h:91
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:859
TAxis * GetXaxis()
Definition: TH1.h:300
virtual Int_t GetNbinsY() const
Definition: TH1.h:278
const Double_t kDefaultEpsilon