68 struct gsl_function_struct
70 double (*
function) (
double x,
void * params);
74 #define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params) 78 double epsabs,
double epsrel,
79 double *
result,
double *abserr,
180 oocoutE((
TObject*)0,
Eval) <<
"RooGaussKronrodIntegrator1D::setLimits: cannot override integrand's limits" << endl;
267 #define GSL_SUCCESS 0 268 #define GSL_EBADTOL 13 270 #define GSL_ERROR(a,b) oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::integral() ERROR: " << a << endl ; return b ; 271 #define GSL_DBL_MIN 2.2250738585072014e-308 272 #define GSL_DBL_EPSILON 2.2204460492503131e-16 279 double epsabs,
double epsrel,
280 double *
result,
double *abserr,
286 static double rescale_error (
double err,
const double result_abs,
const double result_asc) ;
289 rescale_error (
double err,
const double result_abs,
const double result_asc)
293 if (result_asc != 0 && err != 0)
295 double scale =
TMath::Power((200 * err / result_asc), 1.5) ;
299 err = result_asc * scale ;
327 static const double x1[5] = {
328 0.973906528517171720077964012084452,
329 0.865063366688984510732096688423493,
330 0.679409568299024406234327365114874,
331 0.433395394129247190799265943165784,
332 0.148874338981631210884826001129720
336 static const double w10[5] = {
337 0.066671344308688137593568809893332,
338 0.149451349150580593145776339657697,
339 0.219086362515982043995534934228163,
340 0.269266719309996355091226921569469,
341 0.295524224714752870173892994651338
345 static const double x2[5] = {
346 0.995657163025808080735527280689003,
347 0.930157491355708226001207180059508,
348 0.780817726586416897063717578345042,
349 0.562757134668604683339000099272694,
350 0.294392862701460198131126603103866
354 static const double w21a[5] = {
355 0.032558162307964727478818972459390,
356 0.075039674810919952767043140916190,
357 0.109387158802297641899210590325805,
358 0.134709217311473325928054001771707,
359 0.147739104901338491374841515972068
363 static const double w21b[6] = {
364 0.011694638867371874278064396062192,
365 0.054755896574351996031381300244580,
366 0.093125454583697605535065465083366,
367 0.123491976262065851077958109831074,
368 0.142775938577060080797094273138717,
369 0.149445554002916905664936468389821
373 static const double x3[11] = {
374 0.999333360901932081394099323919911,
375 0.987433402908088869795961478381209,
376 0.954807934814266299257919200290473,
377 0.900148695748328293625099494069092,
378 0.825198314983114150847066732588520,
379 0.732148388989304982612354848755461,
380 0.622847970537725238641159120344323,
381 0.499479574071056499952214885499755,
382 0.364901661346580768043989548502644,
383 0.222254919776601296498260928066212,
384 0.074650617461383322043914435796506
388 static const double w43a[10] = {
389 0.016296734289666564924281974617663,
390 0.037522876120869501461613795898115,
391 0.054694902058255442147212685465005,
392 0.067355414609478086075553166302174,
393 0.073870199632393953432140695251367,
394 0.005768556059769796184184327908655,
395 0.027371890593248842081276069289151,
396 0.046560826910428830743339154433824,
397 0.061744995201442564496240336030883,
398 0.071387267268693397768559114425516
402 static const double w43b[12] = {
403 0.001844477640212414100389106552965,
404 0.010798689585891651740465406741293,
405 0.021895363867795428102523123075149,
406 0.032597463975345689443882222526137,
407 0.042163137935191811847627924327955,
408 0.050741939600184577780189020092084,
409 0.058379395542619248375475369330206,
410 0.064746404951445885544689259517511,
411 0.069566197912356484528633315038405,
412 0.072824441471833208150939535192842,
413 0.074507751014175118273571813842889,
414 0.074722147517403005594425168280423
418 static const double x4[22] = {
419 0.999902977262729234490529830591582,
420 0.997989895986678745427496322365960,
421 0.992175497860687222808523352251425,
422 0.981358163572712773571916941623894,
423 0.965057623858384619128284110607926,
424 0.943167613133670596816416634507426,
425 0.915806414685507209591826430720050,
426 0.883221657771316501372117548744163,
427 0.845710748462415666605902011504855,
428 0.803557658035230982788739474980964,
429 0.757005730685495558328942793432020,
430 0.706273209787321819824094274740840,
431 0.651589466501177922534422205016736,
432 0.593223374057961088875273770349144,
433 0.531493605970831932285268948562671,
434 0.466763623042022844871966781659270,
435 0.399424847859218804732101665817923,
436 0.329874877106188288265053371824597,
437 0.258503559202161551802280975429025,
438 0.185695396568346652015917141167606,
439 0.111842213179907468172398359241362,
440 0.037352123394619870814998165437704
444 static const double w87a[21] = {
445 0.008148377384149172900002878448190,
446 0.018761438201562822243935059003794,
447 0.027347451050052286161582829741283,
448 0.033677707311637930046581056957588,
449 0.036935099820427907614589586742499,
450 0.002884872430211530501334156248695,
451 0.013685946022712701888950035273128,
452 0.023280413502888311123409291030404,
453 0.030872497611713358675466394126442,
454 0.035693633639418770719351355457044,
455 0.000915283345202241360843392549948,
456 0.005399280219300471367738743391053,
457 0.010947679601118931134327826856808,
458 0.016298731696787335262665703223280,
459 0.021081568889203835112433060188190,
460 0.025370969769253827243467999831710,
461 0.029189697756475752501446154084920,
462 0.032373202467202789685788194889595,
463 0.034783098950365142750781997949596,
464 0.036412220731351787562801163687577,
465 0.037253875503047708539592001191226
469 static const double w87b[23] = {
470 0.000274145563762072350016527092881,
471 0.001807124155057942948341311753254,
472 0.004096869282759164864458070683480,
473 0.006758290051847378699816577897424,
474 0.009549957672201646536053581325377,
475 0.012329447652244853694626639963780,
476 0.015010447346388952376697286041943,
477 0.017548967986243191099665352925900,
478 0.019938037786440888202278192730714,
479 0.022194935961012286796332102959499,
480 0.024339147126000805470360647041454,
481 0.026374505414839207241503786552615,
482 0.028286910788771200659968002987960,
483 0.030052581128092695322521110347341,
484 0.031646751371439929404586051078883,
485 0.033050413419978503290785944862689,
486 0.034255099704226061787082821046821,
487 0.035262412660156681033782717998428,
488 0.036076989622888701185500318003895,
489 0.036698604498456094498018047441094,
490 0.037120549269832576114119958413599,
491 0.037334228751935040321235449094698,
492 0.037361073762679023410321241766599
499 double epsabs,
double epsrel,
500 double *
result,
double * abserr,
size_t * neval)
502 double fv1[5], fv2[5], fv3[5], fv4[5];
504 double res10, res21, res43, res87;
505 double result_kronrod, err ;
509 const double half_length = 0.5 * (b -
a);
510 const double abs_half_length =
fabs (half_length);
511 const double center = 0.5 * (b +
a);
521 GSL_ERROR (
"tolerance cannot be acheived with given epsabs and epsrel",
528 res21 =
w21b[5] * f_center;
531 for (k = 0; k < 5; k++)
533 const double abscissa = half_length *
x1[k];
534 const double fval1 =
GSL_FN_EVAL(f, center + abscissa);
535 const double fval2 =
GSL_FN_EVAL(f, center - abscissa);
536 const double fval = fval1 + fval2;
537 res10 +=
w10[k] * fval;
538 res21 +=
w21a[k] * fval;
545 for (k = 0; k < 5; k++)
547 const double abscissa = half_length *
x2[k];
548 const double fval1 =
GSL_FN_EVAL(f, center + abscissa);
549 const double fval2 =
GSL_FN_EVAL(f, center - abscissa);
550 const double fval = fval1 + fval2;
551 res21 +=
w21b[k] * fval;
553 savfun[k + 5] = fval;
558 resabs *= abs_half_length ;
561 const double mean = 0.5 * res21;
563 resasc =
w21b[5] *
fabs (f_center - mean);
565 for (k = 0; k < 5; k++)
568 (
w21a[k] * (
fabs (fv1[k] - mean) +
fabs (fv2[k] - mean))
569 +
w21b[k] * (fabs (fv3[k] - mean) +
fabs (fv4[k] - mean)));
571 resasc *= abs_half_length ;
574 result_kronrod = res21 * half_length;
576 err =
rescale_error ((res21 - res10) * half_length, resabs, resasc) ;
580 if (err < epsabs || err < epsrel * fabs (result_kronrod))
582 * result = result_kronrod ;
590 res43 =
w43b[11] * f_center;
592 for (k = 0; k < 10; k++)
594 res43 += savfun[k] *
w43a[k];
597 for (k = 0; k < 11; k++)
599 const double abscissa = half_length *
x3[k];
600 const double fval = (
GSL_FN_EVAL(f, center + abscissa)
602 res43 += fval *
w43b[k];
603 savfun[k + 10] = fval;
608 result_kronrod = res43 * half_length;
609 err =
rescale_error ((res43 - res21) * half_length, resabs, resasc);
611 if (err < epsabs || err < epsrel * fabs (result_kronrod))
613 * result = result_kronrod ;
621 res87 =
w87b[22] * f_center;
623 for (k = 0; k < 21; k++)
625 res87 += savfun[k] *
w87a[k];
628 for (k = 0; k < 22; k++)
630 const double abscissa = half_length *
x4[k];
637 result_kronrod = res87 * half_length ;
639 err =
rescale_error ((res87 - res43) * half_length, resabs, resasc);
641 if (err < epsabs || err < epsrel * fabs (result_kronrod))
643 * result = result_kronrod ;
651 * result = result_kronrod ;
RooAbsIntegrator is the abstract interface for integrators of real-valued functions that implement th...
static double rescale_error(double err, const double result_abs, const double result_asc)
RooNumIntConfig holds the configuration parameters of the various numeric integrators used by RooReal...
Bool_t _useIntegrandLimits
int gsl_integration_qng(const gsl_function *f, double a, double b, double epsabs, double epsrel, double *result, double *abserr, size_t *neval)
static const double w87a[21]
static const double w43b[12]
static const double w21b[6]
RooNumIntFactory is a factory to instantiate numeric integrators from a given function binding and a ...
RooGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
RooGaussKronrodIntegrator1D()
coverity[UNINIT_CTOR] Default constructor
Double_t _xmax
Lower integration bound.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
static const double x2[5]
Double_t integrand(const Double_t x[]) const
Double_t _epsAbs
do not persist
static const double x4[22]
void function(const Char_t *name_, T fun, const Char_t *docstring=0)
Bool_t initialize()
Perform one-time initialization of integrator.
static const double w10[5]
static const double w43a[10]
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
static void registerIntegrator(RooNumIntFactory &fact)
Register RooGaussKronrodIntegrator1D, its parameters and capabilities with RooNumIntConfig.
UInt_t getDimension() const
virtual Double_t integral(const Double_t *yvec=0)
Calculate and return integral.
virtual ~RooGaussKronrodIntegrator1D()
Destructor.
virtual Bool_t checkLimits() const
Check that our integration range is finite and otherwise return kFALSE.
const RooAbsFunc * _function
virtual Double_t getMinLimit(UInt_t dimension) const =0
static const double w21a[5]
const RooAbsFunc * integrand() const
static const double w87b[23]
static const double x1[5]
struct gsl_function_struct gsl_function
virtual Double_t getMaxLimit(UInt_t dimension) const =0
Bool_t setLimits(Double_t *xmin, Double_t *xmax)
Change our integration limits.
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
Mother of all ROOT objects.
virtual RooAbsIntegrator * clone(const RooAbsFunc &function, const RooNumIntConfig &config) const
Clone integrator with given function and configuration. Needed for RooNumIntFactory.
Double_t * xvec(Double_t &xx)
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
friend double RooGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data)
#define GSL_FN_EVAL(F, x)
Abstract interface for evaluating a real-valued function of one real variable and performing numerica...
Bool_t storeProtoIntegrator(RooAbsIntegrator *proto, const RooArgSet &defConfig, const char *depName="")
Method accepting registration of a prototype numeric integrator along with a RooArgSet of its default...
static const double x3[11]