Logo ROOT   6.10/09
Reference Guide
HypoTestInverterResult.h
Go to the documentation of this file.
1 // @(#)root/roostats:$Id$
2 // Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
3 /*************************************************************************
4  * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5  * All rights reserved. *
6  * *
7  * For the licensing terms see $ROOTSYS/LICENSE. *
8  * For the list of contributors see $ROOTSYS/README/CREDITS. *
9  *************************************************************************/
10 
11 #ifndef ROOSTATS_HypoTestInverterResult
12 #define ROOSTATS_HypoTestInverterResult
13 
14 
15 
17 
19 
20 class RooRealVar;
21 
22 namespace RooStats {
23 
24 class SamplingDistribution;
25 
27 
28 public:
29 
30  /// default constructor
31  explicit HypoTestInverterResult(const char* name = 0);
32 
33  /// constructor
34  HypoTestInverterResult( const char* name,
35  const RooRealVar& scannedVariable,
36  double cl ) ;
37 
38  HypoTestInverterResult( const HypoTestInverterResult& other, const char* name );
39 
40  /// destructor
41  virtual ~HypoTestInverterResult();
42 
43  /// operator =
45 
46  /// remove points that appear to have failed.
47  int ExclusionCleanup();
48 
49  /// merge with the content of another HypoTestInverterResult object
50  bool Add( const HypoTestInverterResult& otherResult );
51 
52  ///add the result of a single point (an HypoTestRsult)
53  bool Add( Double_t x, const HypoTestResult & result );
54 
55  /// function to return the value of the parameter of interest for the i^th entry in the results
56  double GetXValue( int index ) const ;
57 
58  /// function to return the value of the confidence level for the i^th entry in the results
59  double GetYValue( int index ) const ;
60 
61  /// function to return the estimated error on the value of the confidence level for the i^th entry in the results
62  double GetYError( int index ) const ;
63 
64  /// return the observed CLsplusb value for the i-th entry
65  double CLsplusb( int index) const;
66 
67  /// return the observed CLb value for the i-th entry
68  double CLb( int index) const;
69 
70  /// return the observed CLb value for the i-th entry
71  double CLs( int index) const;
72 
73  /// return the observed CLsplusb value for the i-th entry
74  double CLsplusbError( int index) const;
75 
76  /// return the observed CLb value for the i-th entry
77  double CLbError( int index) const;
78 
79  /// return the observed CLb value for the i-th entry
80  double CLsError( int index) const;
81 
82  /// return a pointer to the i^th result object
83  HypoTestResult* GetResult( int index ) const ;
84 
85  double GetLastYValue( ) const { return GetYValue( fXValues.size()-1); }
86 
87  double GetLastXValue( ) const { return GetXValue( fXValues.size()-1); }
88 
89  double GetLastYError( ) const { return GetYError( fXValues.size()-1); }
90 
91  HypoTestResult * GetLastResult( ) const { return GetResult( fXValues.size()-1); }
92 
93  /// number of entries in the results array
94  int ArraySize() const { return fXValues.size(); };
95 
96  int FindIndex(double xvalue) const;
97 
98  /// set the size of the test (rate of Type I error) (eg. 0.05 for a 95% Confidence Interval)
99  virtual void SetTestSize( Double_t size ) { fConfidenceLevel = 1.-size; }
100 
101  /// set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
102  virtual void SetConfidenceLevel( Double_t cl ) { fConfidenceLevel = cl; }
103 
104  /// set CLs threshold for exclusion cleanup function
106 
107  /// flag to switch between using CLsb (default) or CLs as confidence level
108  void UseCLs( bool on = true ) { fUseCLs = on; }
109 
110  /// query if one sided result
111  bool IsOneSided() const { return !fIsTwoSided; }
112  /// query if two sided result
113  bool IsTwoSided() const { return fIsTwoSided; }
114 
115  /// lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-confidence level ) by 2
118 
119  /// rough estimation of the error on the computed bound of the confidence interval
120  /// Estimate of lower limit error
121  ///function evaluates only a rough error on the lower limit. Be careful when using this estimation
123 
124  /// Estimate of lower limit error
125  ///function evaluates only a rough error on the lower limit. Be careful when using this estimation
127 
128  /// return expected distribution of p-values (Cls or Clsplusb)
129 
130  SamplingDistribution * GetExpectedPValueDist(int index) const;
131 
133 
135 
136  /// same in terms of alt and null
139  }
141  return GetBackgroundTestStatDist(index);
142  }
143 
144  /// get expected lower limit distributions
145  /// implemented using interpolation
146  /// The size for the sampling distribution is given (by default is given by the average number of toy/point)
148 
149  /// get expected upper limit distributions
150  /// implemented using interpolation
152 
153  /// get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
154  double GetExpectedLowerLimit(double nsig = 0, const char * opt = "" ) const ;
155 
156  /// get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
157  double GetExpectedUpperLimit(double nsig = 0, const char * opt = "") const ;
158 
159 
160  double FindInterpolatedLimit(double target, bool lowSearch = false, double xmin=1, double xmax=0);
161 
163 
164  /// set the interpolation option, linear (kLinear ) or spline (kSpline)
166 
168 
169 private:
170 
171 
172  double CalculateEstimatedError(double target, bool lower = true, double xmin = 1, double xmax = 0);
173 
174  int FindClosestPointIndex(double target, int mode = 0, double xtarget = 0);
175 
176  SamplingDistribution* GetLimitDistribution(bool lower ) const;
177 
178  double GetExpectedLimit(double nsig, bool lower, const char * opt = "" ) const ;
179 
180  double GetGraphX(const TGraph & g, double y0, bool lowSearch, double &xmin, double &xmax) const;
181  double GetGraphX(const TGraph & g, double y0, bool lowSearch = true) const {
182  double xmin=1; double xmax = 0;
183  return GetGraphX(g,y0,lowSearch,xmin,xmax);
184  }
185 
186 
187 protected:
188 
189  bool fUseCLs;
190  bool fIsTwoSided; /// two sided scan (look for lower/upper limit)
195  InterpolOption_t fInterpolOption; /// interpolation option (linear or spline)
196 
199 
201 
202  static double fgAsymptoticMaxSigma; /// max sigma value used to scan asymptotic expected p values
203  static int fgAsymptoticNumPoints; /// number of points used to build expected p-values
204 
205  std::vector<double> fXValues;
206 
207  TList fYObjects; /// list of HypoTestResult for each point
208  TList fExpPValues; /// list of expected sampling distribution for each point
209 
210  friend class HypoTestInverter;
211  friend class HypoTestInverterPlot;
213 
214  ClassDef(HypoTestInverterResult,5) /// HypoTestInverterResult class
215 };
216 }
217 
218 #endif
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma ...
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
float xmin
Definition: THbookFile.cxx:93
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
HypoTestInverter class for performing an hypothesis test inversion by scanning the hypothesis test re...
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
void SetCLsCleanupThreshold(Double_t th)
set CLs threshold for exclusion cleanup function
virtual void SetTestSize(Double_t size)
set the size of the test (rate of Type I error) (eg. 0.05 for a 95% Confidence Interval) ...
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma ...
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
HypoTestInverterResult(const char *name=0)
default constructor
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results ...
HypoTestResult is a base class for results from hypothesis tests.
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
void SetInterpolationOption(InterpolOption_t opt)
set the interpolation option, linear (kLinear ) or spline (kSpline)
Double_t x[n]
Definition: legend1.C:17
#define ClassDef(name, id)
Definition: Rtypes.h:297
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
double CLsError(int index) const
return the observed CLb value for the i-th entry
SamplingDistribution * GetLowerLimitDistribution() const
get expected lower limit distributions implemented using interpolation The size for the sampling dist...
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
void UseCLs(bool on=true)
flag to switch between using CLsb (default) or CLs as confidence level
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
Double_t LowerLimit()
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
bool fInterpolateLowerLimit
two sided scan (look for lower/upper limit)
int ExclusionCleanup()
remove points that appear to have failed.
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
A doubly linked list.
Definition: TList.h:43
double CLs(int index) const
return the observed CLb value for the i-th entry
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
double CLbError(int index) const
return the observed CLb value for the i-th entry
double CLb(int index) const
return the observed CLb value for the i-th entry
TList fExpPValues
list of HypoTestResult for each point
SamplingDistribution * GetUpperLimitDistribution() const
get expected upper limit distributions implemented using interpolation
static int fgAsymptoticNumPoints
max sigma value used to scan asymptotic expected p values
float xmax
Definition: THbookFile.cxx:93
This class simply holds a sampling distribution of some test statistic.
bool IsTwoSided() const
query if two sided result
HypoTestResult * GetLastResult() const
InterpolOption_t GetInterpolationOption() const
Namespace for the RooStats classes.
Definition: Asimov.h:20
This class is now deprecated and to be replaced by the HypoTestInverter.
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
double Double_t
Definition: RtypesCore.h:55
Class to plot an HypoTestInverterResult, result of the HypoTestInverter calculator.
Double_t LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results ...
double GetGraphX(const TGraph &g, double y0, bool lowSearch=true) const
Double_t UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
SimpleInterval is a concrete implementation of the ConfInterval interface.
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
double fLowerLimitError
interpolation option (linear or spline)
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
A Graph is a graphics object made of two arrays X and Y with npoints each.
Definition: TGraph.h:41
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
double result[121]
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0)
Return an error estimate on the upper(lower) limit.
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
int ArraySize() const
number of entries in the results array
virtual void SetConfidenceLevel(Double_t cl)
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval) ...
bool IsOneSided() const
query if one sided result
SamplingDistribution * GetAltTestStatDist(int index) const
std::vector< double > fXValues
number of points used to build expected p-values