Logo ROOT   6.08/07
Reference Guide
testPyKerasRegression.C
Go to the documentation of this file.
1 #include <iostream>
2 
3 #include "TString.h"
4 #include "TFile.h"
5 #include "TTree.h"
6 #include "TSystem.h"
7 #include "TMVA/Factory.h"
8 #include "TMVA/Reader.h"
9 #include "TMVA/DataLoader.h"
10 #include "TMVA/PyMethodBase.h"
11 
13 from keras.models import Sequential\n\
14 from keras.layers.core import Dense, Activation\n\
15 from keras import initializations\n\
16 from keras.optimizers import SGD\n\
17 \n\
18 model = Sequential()\n\
19 model.add(Dense(64, init=\"normal\", activation=\"tanh\", input_dim=2))\n\
20 model.add(Dense(1, init=\"normal\", activation=\"linear\"))\n\
21 model.compile(loss=\"mean_squared_error\", optimizer=SGD(lr=0.01))\n\
22 model.save(\"kerasModelRegression.h5\")\n";
23 
25  // Get data file
26  std::cout << "Get test data..." << std::endl;
27  TString fname = "./tmva_reg_example.root";
28  if (gSystem->AccessPathName(fname)) // file does not exist in local directory
29  gSystem->Exec("curl -O http://root.cern.ch/files/tmva_reg_example.root");
30  TFile *input = TFile::Open(fname);
31 
32  // Build model from python file
33  std::cout << "Generate keras model..." << std::endl;
34  UInt_t ret;
35  ret = gSystem->Exec("echo '"+pythonSrc+"' > generateKerasModelRegression.py");
36  if(ret!=0){
37  std::cout << "[ERROR] Failed to write python code to file" << std::endl;
38  return 1;
39  }
40  ret = gSystem->Exec("python generateKerasModelRegression.py");
41  if(ret!=0){
42  std::cout << "[ERROR] Failed to generate model using python" << std::endl;
43  return 1;
44  }
45 
46  // Setup PyMVA and factory
47  std::cout << "Setup TMVA..." << std::endl;
49  TFile* outputFile = TFile::Open("ResultsTestPyKerasRegression.root", "RECREATE");
50  TMVA::Factory *factory = new TMVA::Factory("testPyKerasRegression", outputFile,
51  "!V:Silent:Color:!DrawProgressBar:AnalysisType=Regression");
52 
53  // Load data
54  TMVA::DataLoader *dataloader = new TMVA::DataLoader("datasetTestPyKerasRegression");
55 
56  TTree *tree = (TTree*)input->Get("TreeR");
57  dataloader->AddRegressionTree(tree);
58 
59  dataloader->AddVariable("var1");
60  dataloader->AddVariable("var2");
61  dataloader->AddTarget("fvalue");
62 
63  dataloader->PrepareTrainingAndTestTree("",
64  "SplitMode=Random:NormMode=NumEvents:!V");
65 
66  // Book and train method
67  factory->BookMethod(dataloader, TMVA::Types::kPyKeras, "PyKeras",
68  "!H:!V:VarTransform=D,G:FilenameModel=kerasModelRegression.h5:FilenameTrainedModel=trainedKerasModelRegression.h5:NumEpochs=10:BatchSize=32:SaveBestOnly=false:Verbose=0");
69  std::cout << "Train model..." << std::endl;
70  factory->TrainAllMethods();
71 
72  // Clean-up
73  delete factory;
74  delete dataloader;
75  delete outputFile;
76 
77  // Setup reader
78  UInt_t numEvents = 100;
79  std::cout << "Run reader and estimate target of " << numEvents << " events..." << std::endl;
80  TMVA::Reader *reader = new TMVA::Reader("!Color:Silent");
81  Float_t vars[3];
82  reader->AddVariable("var1", vars+0);
83  reader->AddVariable("var2", vars+1);
84  reader->BookMVA("PyKeras", "datasetTestPyKerasRegression/weights/testPyKerasRegression_PyKeras.weights.xml");
85 
86  // Get mean squared error on events
87  tree->SetBranchAddress("var1", vars+0);
88  tree->SetBranchAddress("var2", vars+1);
89  tree->SetBranchAddress("fvalue", vars+2);
90 
91  Float_t meanMvaError = 0;
92  for(UInt_t i=0; i<numEvents; i++){
93  tree->GetEntry(i);
94  meanMvaError += std::pow(vars[2]-reader->EvaluateMVA("PyKeras"),2);
95  }
96  meanMvaError = meanMvaError/float(numEvents);
97 
98  // Check whether the response is obviously better than guessing
99  std::cout << "Mean squared error: " << meanMvaError << std::endl;
100  if(meanMvaError > 30.0){
101  std::cout << "[ERROR] Mean squared error is " << meanMvaError << " (>30.0)" << std::endl;
102  return 1;
103  }
104 
105  return 0;
106 }
107 
108 int main(){
109  int err = testPyKerasRegression();
110  return err;
111 }
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1266
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Definition: Factory.cxx:337
float Float_t
Definition: RtypesCore.h:53
void AddVariable(const TString &expression, Float_t *)
Add a float variable or expression to the reader.
Definition: Reader.cxx:309
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Definition: TFile.h:50
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
int testPyKerasRegression()
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
Definition: TTree.cxx:5211
Basic string class.
Definition: TString.h:137
void TrainAllMethods()
iterates through all booked methods and calls training
Definition: Factory.cxx:822
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
Definition: DataLoader.cxx:456
static void PyInitialize()
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=1, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3907
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=0)
Change branch address, dealing with clone trees properly.
Definition: TTree.cxx:7760
double pow(double, double)
IMethod * BookMVA(const TString &methodTag, const TString &weightfile)
read method name from weight file
Definition: Reader.cxx:378
R__EXTERN TSystem * gSystem
Definition: TSystem.h:549
unsigned int UInt_t
Definition: RtypesCore.h:42
TString pythonSrc
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
Definition: DataLoader.h:120
virtual Int_t Exec(const char *shellcmd)
Execute a command.
Definition: TSystem.cxx:658
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
Definition: DataLoader.cxx:580
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
Definition: DataLoader.cxx:472
Double_t EvaluateMVA(const std::vector< Float_t > &, const TString &methodTag, Double_t aux=0)
Evaluate a std::vector<float> of input data for a given method The parameter aux is obligatory for th...
Definition: Reader.cxx:486
Definition: tree.py:1
A TTree object has a header with a name and a title.
Definition: TTree.h:98
int main()