Logo ROOT   6.08/07
Reference Guide
TRotMatrix.cxx
Go to the documentation of this file.
1 // @(#)root/g3d:$Id$
2 // Author: Rene Brun 14/09/95
3 
4 /*************************************************************************
5  * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6  * All rights reserved. *
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. *
9  * For the list of contributors see $ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11 
12 #include "TRotMatrix.h"
13 #include "TBuffer.h"
14 #include "TClass.h"
15 #include "TGeometry.h"
16 #include "TMath.h"
17 
19 
20 /** \class TRotMatrix
21 \ingroup g3d
22 Manages a detector rotation matrix. See class TGeometry.
23 */
24 
25 ////////////////////////////////////////////////////////////////////////////////
26 /// RotMatrix default constructor.
27 
29 {
30  for (int i=0;i<9;i++) fMatrix[i] = 0;
31  fNumber = 0;
32  fPhi = 0;
33  fPsi = 0;
34  fTheta = 0;
35  fType = 0;
36 }
37 
38 ////////////////////////////////////////////////////////////////////////////////
39 /// RotMatrix normal constructor.
40 
41 TRotMatrix::TRotMatrix(const char *name, const char *title, Double_t *matrix)
42  :TNamed(name,title)
43 {
44  if (!matrix) { Error("ctor","No rotation is supplied"); return; }
45 
46  fNumber = 0;
47  fPhi = 0;
48  fPsi = 0;
49  fTheta = 0;
50  fType = 0;
51 
52  SetMatrix(matrix);
53  if (!gGeometry) gGeometry = new TGeometry();
56 }
57 
58 ////////////////////////////////////////////////////////////////////////////////
59 /// RotMatrix normal constructor.
60 
61 TRotMatrix::TRotMatrix(const char *name, const char *title, Double_t theta, Double_t phi, Double_t psi)
62  :TNamed(name,title)
63 {
64  printf("ERROR: This form of TRotMatrix constructor not implemented yet\n");
65 
66  Int_t i;
67  fTheta = theta;
68  fPhi = phi;
69  fPsi = psi;
70  fType = 2;
71  for (i=0;i<9;i++) fMatrix[i] = 0;
72  fMatrix[0] = 1; fMatrix[4] = 1; fMatrix[8] = 1;
73 
74  if (!gGeometry) gGeometry = new TGeometry();
77 }
78 
79 ////////////////////////////////////////////////////////////////////////////////
80 /// RotMatrix normal constructor defined a la GEANT.
81 ///
82 /// The TRotMatrix constructor with six angles uses the GEANT convention:
83 ///
84 /// theta1 is the polar angle of the x-prim axis in the main reference system
85 /// (MRS), theta2 and theta3 have the same meaning for the y-prim and z-prim
86 /// axis.
87 ///
88 /// Phi1 is the azimuthal angle of the x-prim in the MRS and phi2 and phi3
89 /// have the same meaning for y-prim and z-prim.
90 ///
91 ///
92 /// for example, the unit matrix is defined in the following way.
93 /// ~~~ {.cpp}
94 /// x-prim || x, y-prim || y, z-prim || z
95 ///
96 /// means: theta1=90, theta2=90, theta3=0, phi1=0, phi2=90, phi3=0
97 /// ~~~
98 
99 TRotMatrix::TRotMatrix(const char *name, const char *title, Double_t theta1, Double_t phi1
100  , Double_t theta2, Double_t phi2
101  , Double_t theta3, Double_t phi3)
102  :TNamed(name,title)
103 {
104  SetAngles(theta1,phi1,theta2,phi2,theta3,phi3);
105 
106  if (!gGeometry) gGeometry = new TGeometry();
108  gGeometry->GetListOfMatrices()->Add(this);
109 }
110 
111 ////////////////////////////////////////////////////////////////////////////////
112 /// RotMatrix default destructor.
113 
115 {
117 }
118 
119 ////////////////////////////////////////////////////////////////////////////////
120 /// Returns the value of the determinant of this matrix
121 
123 {
124  return
125  fMatrix[0] * (fMatrix[4]*fMatrix[8] - fMatrix[7]*fMatrix[5])
126  - fMatrix[3] * (fMatrix[1]*fMatrix[8] - fMatrix[7]*fMatrix[2])
127  + fMatrix[6] * (fMatrix[1]*fMatrix[5] - fMatrix[4]*fMatrix[2]);
128 }
129 
130 ////////////////////////////////////////////////////////////////////////////////
131 /// Convert this matrix to the OpenGL [4x4]
132 ///
133 /// ~~~ {.cpp}
134 /// [ fMatrix[0] fMatrix[1] fMatrix[2] 0 ]
135 /// [ fMatrix[3] fMatrix[4] fMatrix[5] 0 ]
136 /// [ fMatrix[6] fMatrix[7] fMatrix[8] 0 ]
137 /// [ 0 0 0 1 ]
138 /// ~~~
139 ///
140 /// Input:
141 ///
142 /// Double_t *rGLMatrix: pointer to Double_t 4x4 buffer array
143 ///
144 /// Return:
145 ///
146 /// Double_t*: pointer to the input buffer
147 
149 {
150  Double_t *glmatrix = rGLMatrix;
151  const Double_t *matrix = fMatrix;
152  if (rGLMatrix)
153  {
154  for (Int_t i=0;i<3;i++) {
155  for (Int_t j=0;j<3;j++) memcpy(glmatrix,matrix,3*sizeof(Double_t));
156  matrix += 3;
157  glmatrix += 3;
158  *glmatrix = 0.0;
159  glmatrix++;
160  }
161  for (Int_t j=0;j<3;j++) {
162  *glmatrix = 0.0;
163  glmatrix++;
164  }
165  *glmatrix = 1.0;
166  }
167  return rGLMatrix;
168 }
169 
170 ////////////////////////////////////////////////////////////////////////////////
171 /// theta1 is the polar angle of the x-prim axis in the main reference system
172 /// (MRS), theta2 and theta3 have the same meaning for the y-prim and z-prim
173 /// axis.
174 ///
175 /// Phi1 is the azimuthal angle of the x-prim in the MRS and phi2 and phi3
176 /// have the same meaning for y-prim and z-prim.
177 ///
178 ///
179 /// for example, the unit matrix is defined in the following way.
180 ///
181 /// ~~~ {.cpp}
182 /// x-prim || x, y-prim || y, z-prim || z
183 ///
184 /// means: theta1=90, theta2=90, theta3=0, phi1=0, phi2=90, phi3=0
185 /// ~~~
186 
188  Double_t theta2, Double_t phi2,Double_t theta3, Double_t phi3)
189 {
190  const Double_t degrad = 0.0174532925199432958;
191 
192  fTheta = theta1;
193  fPhi = phi1;
194  fPsi = theta2;
195 
196  fType = 2;
197  if (!strcmp(GetName(),"Identity")) fType = 0;
198 
199  fMatrix[0] = TMath::Sin(theta1*degrad)*TMath::Cos(phi1*degrad);
200  fMatrix[1] = TMath::Sin(theta1*degrad)*TMath::Sin(phi1*degrad);
201  fMatrix[2] = TMath::Cos(theta1*degrad);
202  fMatrix[3] = TMath::Sin(theta2*degrad)*TMath::Cos(phi2*degrad);
203  fMatrix[4] = TMath::Sin(theta2*degrad)*TMath::Sin(phi2*degrad);
204  fMatrix[5] = TMath::Cos(theta2*degrad);
205  fMatrix[6] = TMath::Sin(theta3*degrad)*TMath::Cos(phi3*degrad);
206  fMatrix[7] = TMath::Sin(theta3*degrad)*TMath::Sin(phi3*degrad);
207  fMatrix[8] = TMath::Cos(theta3*degrad);
208 
209  SetReflection();
210  return fMatrix;
211 }
212 
213 ////////////////////////////////////////////////////////////////////////////////
214 /// copy predefined 3x3 matrix into TRotMatrix object
215 
216 void TRotMatrix::SetMatrix(const Double_t *matrix)
217 {
218  fTheta = 0;
219  fPhi = 0;
220  fPsi = 0;
221  fType = 0;
222  if (!matrix) return;
223  fType = 2;
224  memcpy(fMatrix,matrix,9*sizeof(Double_t));
225  SetReflection();
226 }
227 
228 ////////////////////////////////////////////////////////////////////////////////
229 /// Checks whether the determinant of this
230 /// matrix defines the reflection transformation
231 /// and set the "reflection" flag if any
232 
234 {
236  if (Determinant() < 0) { fType=1; SetBit(kReflection);}
237 }
238 
239 ////////////////////////////////////////////////////////////////////////////////
240 /// Stream an object of class TRotMatrix.
241 
242 void TRotMatrix::Streamer(TBuffer &R__b)
243 {
244  if (R__b.IsReading()) {
245  UInt_t R__s, R__c;
246  Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
247  if (R__v > 1) {
248  R__b.ReadClassBuffer(TRotMatrix::Class(), this, R__v, R__s, R__c);
249  return;
250  }
251  //====process old versions before automatic schema evolution
252  TNamed::Streamer(R__b);
253  R__b >> fNumber;
254  R__b >> fType;
255  R__b >> fTheta;
256  R__b >> fPhi;
257  R__b >> fPsi;
258  R__b.ReadStaticArray(fMatrix);
259  R__b.CheckByteCount(R__s, R__c, TRotMatrix::IsA());
260  //====end of old versions
261 
262  } else {
263  R__b.WriteClassBuffer(TRotMatrix::Class(),this);
264  }
265 }
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:51
Double_t fTheta
Definition: TRotMatrix.h:37
Bool_t IsReading() const
Definition: TBuffer.h:83
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
short Version_t
Definition: RtypesCore.h:61
TRotMatrix()
RotMatrix default constructor.
Definition: TRotMatrix.cxx:28
Double_t fPsi
Definition: TRotMatrix.h:39
Buffer base class used for serializing objects.
Definition: TBuffer.h:42
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)=0
virtual Double_t Determinant() const
Returns the value of the determinant of this matrix.
Definition: TRotMatrix.cxx:122
Double_t fPhi
Definition: TRotMatrix.h:38
Int_t fNumber
Definition: TRotMatrix.h:35
int Int_t
Definition: RtypesCore.h:41
const char * Class
Definition: TXMLSetup.cxx:64
virtual void SetMatrix(const Double_t *matrix)
copy predefined 3x3 matrix into TRotMatrix object
Definition: TRotMatrix.cxx:216
virtual Int_t ReadStaticArray(Bool_t *b)=0
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:739
The TNamed class is the base class for all named ROOT classes.
Definition: TNamed.h:33
virtual void SetReflection()
Checks whether the determinant of this matrix defines the reflection transformation and set the "refl...
Definition: TRotMatrix.cxx:233
TGeometry description.
Definition: TGeometry.h:43
Manages a detector rotation matrix.
Definition: TRotMatrix.h:30
TObject * Remove(TObject *obj)
Remove object from the list.
Definition: THashList.cxx:285
unsigned int UInt_t
Definition: RtypesCore.h:42
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:925
virtual const Double_t * SetAngles(Double_t theta1, Double_t phi1, Double_t theta2, Double_t phi2, Double_t theta3, Double_t phi3)
theta1 is the polar angle of the x-prim axis in the main reference system (MRS), theta2 and theta3 ha...
Definition: TRotMatrix.cxx:187
virtual ~TRotMatrix()
RotMatrix default destructor.
Definition: TRotMatrix.cxx:114
Double_t Cos(Double_t)
Definition: TMath.h:424
PyObject * fType
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
THashList * GetListOfMatrices() const
Definition: TGeometry.h:82
Int_t fType
Definition: TRotMatrix.h:36
#define ClassImp(name)
Definition: Rtypes.h:279
double Double_t
Definition: RtypesCore.h:55
virtual void Add(TObject *obj)
Definition: TList.h:81
Double_t Sin(Double_t)
Definition: TMath.h:421
void ResetBit(UInt_t f)
Definition: TObject.h:156
virtual Double_t * GetGLMatrix(Double_t *rGLMatrix) const
Convert this matrix to the OpenGL [4x4].
Definition: TRotMatrix.cxx:148
virtual Int_t GetSize() const
Definition: TCollection.h:95
R__EXTERN TGeometry * gGeometry
Definition: TGeometry.h:162
Double_t fMatrix[9]
Definition: TRotMatrix.h:40
char name[80]
Definition: TGX11.cxx:109
virtual Version_t ReadVersion(UInt_t *start=0, UInt_t *bcnt=0, const TClass *cl=0)=0