Logo ROOT   6.08/07
Reference Guide
Fitter.cxx
Go to the documentation of this file.
1 // @(#)root/mathcore:$Id$
2 // Author: L. Moneta Mon Sep 4 17:00:10 2006
3 
4 /**********************************************************************
5  * *
6  * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7  * *
8  * *
9  **********************************************************************/
10 
11 // Implementation file for class Fitter
12 
13 
14 #include "Fit/Fitter.h"
15 #include "Fit/Chi2FCN.h"
17 #include "Fit/LogLikelihoodFCN.h"
18 #include "Math/Minimizer.h"
19 #include "Math/MinimizerOptions.h"
20 #include "Math/FitMethodFunction.h"
21 #include "Fit/BasicFCN.h"
22 #include "Fit/BinData.h"
23 #include "Fit/UnBinData.h"
24 #include "Fit/FcnAdapter.h"
25 #include "Fit/FitConfig.h"
26 #include "Fit/FitResult.h"
27 #include "Math/Error.h"
28 #include "TF1.h"
29 
30 #include <memory>
31 
32 #include "Math/IParamFunction.h"
33 
35 
36 // #include "TMatrixDSym.h"
37 // for debugging
38 //#include "TMatrixD.h"
39 // #include <iomanip>
40 
41 namespace ROOT {
42 
43  namespace Fit {
44 
45 // use a static variable to get default minimizer options for error def
46 // to see if user has changed it later on. If it has not been changed we set
47 // for the likelihood method an error def of 0.5
48 // t.b.d : multiply likelihood by 2 so have same error def definition as chi2
50 
51 
53  fUseGradient(false),
54  fBinFit(false),
55  fFitType(0),
56  fDataSize(0)
57 {}
58 
59 Fitter::Fitter(const std::shared_ptr<FitResult> & result) :
60  fUseGradient(false),
61  fBinFit(false),
62  fFitType(0),
63  fDataSize(0),
64  fResult(result)
65 {
66  if (result->fFitFunc) SetFunction(*fResult->fFitFunc); // this will create also the configuration
67  if (result->fObjFunc) fObjFunction = fResult->fObjFunc;
68  if (result->fFitData) fData = fResult->fFitData;
69 }
70 
72 {
73  // Destructor implementation.
74 
75  // nothing to do since we use shared_ptr now
76 }
77 
78 Fitter::Fitter(const Fitter & rhs)
79 {
80  // Implementation of copy constructor.
81  // copy FitResult, FitConfig and clone fit function
82  (*this) = rhs;
83 }
84 
86 {
87  // Implementation of assignment operator.
88  // dummy implementation, since it is private
89  if (this == &rhs) return *this; // time saving self-test
90 // fUseGradient = rhs.fUseGradient;
91 // fBinFit = rhs.fBinFit;
92 // fResult = rhs.fResult;
93 // fConfig = rhs.fConfig;
94 // // function is copied and managed by FitResult (maybe should use an auto_ptr)
95 // fFunc = fResult.ModelFunction();
96 // if (rhs.fFunc != 0 && fResult.ModelFunction() == 0) { // case no fit has been done yet - then clone
97 // if (fFunc) delete fFunc;
98 // fFunc = dynamic_cast<IModelFunction *>( (rhs.fFunc)->Clone() );
99 // assert(fFunc != 0);
100 // }
101  return *this;
102 }
103 
105 {
106 
108  if (fUseGradient) {
109  const IGradModelFunction * gradFunc = dynamic_cast<const IGradModelFunction*>(&func);
110  if (gradFunc) {
111  SetFunction(*gradFunc, true);
112  return;
113  }
114  else {
115  MATH_WARN_MSG("Fitter::SetFunction","Requested function does not provide gradient - use it as non-gradient function ");
116  }
117  }
118  fUseGradient = false;
119 
120  // set the fit model function (clone the given one and keep a copy )
121  //std::cout << "set a non-grad function" << std::endl;
122 
123  fFunc = std::shared_ptr<IModelFunction>(dynamic_cast<IModelFunction *>(func.Clone() ) );
124  assert(fFunc);
125 
126  // creates the parameter settings
128 }
129 
130 
132 {
134  if (fUseGradient) {
135  const IGradModel1DFunction * gradFunc = dynamic_cast<const IGradModel1DFunction*>(&func);
136  if (gradFunc) {
137  SetFunction(*gradFunc, true);
138  return;
139  }
140  else {
141  MATH_WARN_MSG("Fitter::SetFunction","Requested function does not provide gradient - use it as non-gradient function ");
142  }
143  }
144  fUseGradient = false;
145  //std::cout << "set a 1d function" << std::endl;
146 
147  // function is cloned when creating the adapter
148  fFunc = std::shared_ptr<IModelFunction>(new ROOT::Math::MultiDimParamFunctionAdapter(func));
149 
150  // creates the parameter settings
152 }
153 
155 {
157  //std::cout << "set a grad function" << std::endl;
158  // set the fit model function (clone the given one and keep a copy )
159  fFunc = std::shared_ptr<IModelFunction>( dynamic_cast<IGradModelFunction *> ( func.Clone() ) );
160  assert(fFunc);
161 
162  // creates the parameter settings
164 }
165 
166 
168 {
169  //std::cout << "set a 1d grad function" << std::endl;
171  // function is cloned when creating the adapter
172  fFunc = std::shared_ptr<IModelFunction>(new ROOT::Math::MultiDimParamGradFunctionAdapter(func));
173 
174  // creates the parameter settings
176 }
177 
178 
179 bool Fitter::SetFCN(const ROOT::Math::IMultiGenFunction & fcn, const double * params, unsigned int dataSize, bool chi2fit) {
180  // set the objective function for the fit
181  // if params is not NULL create the parameter settings
182  fUseGradient = false;
183  unsigned int npar = fcn.NDim();
184  if (npar == 0) {
185  MATH_ERROR_MSG("Fitter::SetFCN","FCN function has zero parameters ");
186  return false;
187  }
188  if (params != 0 )
189  fConfig.SetParamsSettings(npar, params);
190  else {
191  if ( fConfig.ParamsSettings().size() != npar) {
192  MATH_ERROR_MSG("Fitter::SetFCN","wrong fit parameter settings");
193  return false;
194  }
195  }
196 
197  fBinFit = chi2fit;
198  fDataSize = dataSize;
199 
200  // keep also a copy of FCN function and set this in minimizer so they will be managed together
201  // (remember that cloned copy will still depends on data and model function pointers)
202  fObjFunction = std::auto_ptr<ROOT::Math::IMultiGenFunction> ( fcn.Clone() );
203 
204  return true;
205 }
206 
207 bool Fitter::SetFCN(const ROOT::Math::IMultiGradFunction & fcn, const double * params, unsigned int dataSize , bool chi2fit) {
208  // set the objective function for the fit
209  // if params is not NULL create the parameter settings
210  if (!SetFCN(static_cast<const ROOT::Math::IMultiGenFunction &>(fcn),params, dataSize, chi2fit) ) return false;
211  fUseGradient = true;
212  return true;
213 }
214 
215 bool Fitter::SetFCN(const ROOT::Math::FitMethodFunction & fcn, const double * params) {
216  // set the objective function for the fit
217  // if params is not NULL create the parameter settings
218  bool chi2fit = (fcn.Type() == ROOT::Math::FitMethodFunction::kLeastSquare );
219  if (!SetFCN(fcn,params,fcn.NPoints(), chi2fit) ) return false;
220  fUseGradient = false;
221  fFitType = fcn.Type();
222  return true;
223 }
224 
225 bool Fitter::SetFCN(const ROOT::Math::FitMethodGradFunction & fcn, const double * params) {
226  // set the objective function for the fit
227  // if params is not NULL create the parameter settings
228  bool chi2fit = (fcn.Type() == ROOT::Math::FitMethodGradFunction::kLeastSquare );
229  if (!SetFCN(fcn,params,fcn.NPoints(), chi2fit) ) return false;
230  fUseGradient = true;
231  fFitType = fcn.Type();
232  return true;
233 }
234 
235 
236 
237 bool Fitter::FitFCN(const BaseFunc & fcn, const double * params, unsigned int dataSize, bool chi2fit) {
238  // fit a user provided FCN function
239  // create fit parameter settings
240  if (!SetFCN(fcn, params,dataSize,chi2fit) ) return false;
241  return FitFCN();
242 }
243 
244 
245 
246 bool Fitter::FitFCN(const BaseGradFunc & fcn, const double * params, unsigned int dataSize, bool chi2fit) {
247  // fit a user provided FCN gradient function
248 
249  if (!SetFCN(fcn, params,dataSize, chi2fit) ) return false;
250  return FitFCN();
251 }
252 
253 bool Fitter::FitFCN(const ROOT::Math::FitMethodFunction & fcn, const double * params) {
254  // fit using the passed objective function for the fit
255  if (!SetFCN(fcn, params) ) return false;
256  return FitFCN();
257 }
258 
259 bool Fitter::FitFCN(const ROOT::Math::FitMethodGradFunction & fcn, const double * params) {
260  // fit using the passed objective function for the fit
261  if (!SetFCN(fcn, params) ) return false;
262  return FitFCN();
263 }
264 
265 
266 bool Fitter::SetFCN(MinuitFCN_t fcn, int npar, const double * params , unsigned int dataSize , bool chi2fit ){
267  // set TMinuit style FCN type (global function pointer)
268  // create corresponfing objective function from that function
269 
270  if (npar == 0) {
271  npar = fConfig.ParamsSettings().size();
272  if (npar == 0) {
273  MATH_ERROR_MSG("Fitter::FitFCN","Fit Parameter settings have not been created ");
274  return false;
275  }
276  }
277 
278  ROOT::Fit::FcnAdapter newFcn(fcn,npar);
279  return SetFCN(newFcn,params,dataSize,chi2fit);
280 }
281 
282 bool Fitter::FitFCN(MinuitFCN_t fcn, int npar, const double * params , unsigned int dataSize , bool chi2fit ) {
283  // fit using Minuit style FCN type (global function pointer)
284  // create corresponfing objective function from that function
285  if (!SetFCN(fcn, npar, params, dataSize, chi2fit)) return false;
286  fUseGradient = false;
287  return FitFCN();
288 }
289 
291  // fit using the previously set FCN function
292 
293  // in case a model function exists from a previous fit - reset shared-ptr
294  if (fFunc && fResult->FittedFunction() == 0) fFunc.reset();
295 
296  if (!fObjFunction) {
297  MATH_ERROR_MSG("Fitter::FitFCN","Objective function has not been set");
298  return false;
299  }
300  // look if FCN s of a known type and we can get some modelfunction and data objects
301  ExamineFCN();
302  // init the minimizer
303  if (!DoInitMinimizer() ) return false;
304  // perform the minimization
305  return DoMinimization();
306 }
307 
309  // evaluate the FCN using the stored values in fConfig
310 
311  if (fFunc && fResult->FittedFunction() == 0) fFunc.reset();
312 
313  if (!fObjFunction) {
314  MATH_ERROR_MSG("Fitter::FitFCN","Objective function has not been set");
315  return false;
316  }
317  // create a Fit result from the fit configuration
318  fResult = std::shared_ptr<ROOT::Fit::FitResult>(new ROOT::Fit::FitResult(fConfig) );
319  // evaluate one time the FCN
320  double fcnval = (*fObjFunction)(fResult->GetParams() );
321  // update fit result
322  fResult->fVal = fcnval;
323  fResult->fNCalls++;
324  return true;
325 }
326 
327 
329 
330  // perform a chi2 fit on a set of binned data
331  std::shared_ptr<BinData> data = std::dynamic_pointer_cast<BinData>(fData);
332  assert(data);
333 
334  // check function
335  if (!fFunc) {
336  MATH_ERROR_MSG("Fitter::DoLeastSquareFit","model function is not set");
337  return false;
338  }
339 
340 #ifdef DEBUG
341  std::cout << "Fitter ParamSettings " << Config().ParamsSettings()[3].IsBound() << " lower limit " << Config().ParamsSettings()[3].LowerLimit() << " upper limit " << Config().ParamsSettings()[3].UpperLimit() << std::endl;
342 #endif
343 
344  fBinFit = true;
345  fDataSize = data->Size();
346 
347  // check if fFunc provides gradient
348  if (!fUseGradient) {
349  // do minimzation without using the gradient
350  Chi2FCN<BaseFunc> chi2(data,fFunc);
351  fFitType = chi2.Type();
352  return DoMinimization (chi2);
353  }
354  else {
355  // use gradient
356  if (fConfig.MinimizerOptions().PrintLevel() > 0)
357  MATH_INFO_MSG("Fitter::DoLeastSquareFit","use gradient from model function");
358  std::shared_ptr<IGradModelFunction> gradFun = std::dynamic_pointer_cast<IGradModelFunction>(fFunc);
359  if (gradFun) {
360  Chi2FCN<BaseGradFunc> chi2(data,gradFun);
361  fFitType = chi2.Type();
362  return DoMinimization (chi2);
363  }
364  MATH_ERROR_MSG("Fitter::DoLeastSquareFit","wrong type of function - it does not provide gradient");
365  }
366  return false;
367 }
368 
369 bool Fitter::DoBinnedLikelihoodFit(bool extended) {
370  // perform a likelihood fit on a set of binned data
371  // The fit is extended (Poisson logl_ by default
372 
373  std::shared_ptr<BinData> data = std::dynamic_pointer_cast<BinData>(fData);
374  assert(data);
375 
376  bool useWeight = fConfig.UseWeightCorrection();
377 
378  // check function
379  if (!fFunc) {
380  MATH_ERROR_MSG("Fitter::DoLikelihoodFit","model function is not set");
381  return false;
382  }
383 
384  // logl fit (error should be 0.5) set if different than default values (of 1)
387  }
388 
389  if (useWeight && fConfig.MinosErrors() ) {
390  MATH_INFO_MSG("Fitter::DoLikelihoodFit","MINOS errors cannot be computed in weighted likelihood fits");
391  fConfig.SetMinosErrors(false);
392  }
393 
394 
395  fBinFit = true;
396  fDataSize = data->Size();
397 
398  // create a chi2 function to be used for the equivalent chi-square
399  Chi2FCN<BaseFunc> chi2(data,fFunc);
400 
401  if (!fUseGradient) {
402  // do minimization without using the gradient
403  PoissonLikelihoodFCN<BaseFunc> logl(data,fFunc, useWeight, extended);
404  fFitType = logl.Type();
405  // do minimization
406  if (!DoMinimization (logl, &chi2) ) return false;
407  if (useWeight) {
408  logl.UseSumOfWeightSquare();
409  if (!ApplyWeightCorrection(logl) ) return false;
410  }
411  }
412  else {
413  if (fConfig.MinimizerOptions().PrintLevel() > 0)
414  MATH_INFO_MSG("Fitter::DoLikelihoodFit","use gradient from model function");
415  // check if fFunc provides gradient
416  std::shared_ptr<IGradModelFunction> gradFun = std::dynamic_pointer_cast<IGradModelFunction>(fFunc);
417  if (!gradFun) {
418  MATH_ERROR_MSG("Fitter::DoLikelihoodFit","wrong type of function - it does not provide gradient");
419  return false;
420  }
421  // use gradient for minimization
422  // not-extended is not impelemented in this case
423  if (!extended) {
424  MATH_WARN_MSG("Fitter::DoLikelihoodFit","Not-extended binned fit with gradient not yet supported - do an extended fit");
425  }
426  PoissonLikelihoodFCN<BaseGradFunc> logl(data,gradFun, useWeight, true);
427  fFitType = logl.Type();
428  // do minimization
429  if (!DoMinimization (logl, &chi2) ) return false;
430  if (useWeight) {
431  logl.UseSumOfWeightSquare();
432  if (!ApplyWeightCorrection(logl) ) return false;
433  }
434  }
435  return true;
436 }
437 
438 
439 bool Fitter::DoUnbinnedLikelihoodFit(bool extended) {
440  // perform a likelihood fit on a set of unbinned data
441 
442  std::shared_ptr<UnBinData> data = std::dynamic_pointer_cast<UnBinData>(fData);
443  assert(data);
444 
445  bool useWeight = fConfig.UseWeightCorrection();
446 
447  if (!fFunc) {
448  MATH_ERROR_MSG("Fitter::DoLikelihoodFit","model function is not set");
449  return false;
450  }
451 
452  if (useWeight && fConfig.MinosErrors() ) {
453  MATH_INFO_MSG("Fitter::DoLikelihoodFit","MINOS errors cannot be computed in weighted likelihood fits");
454  fConfig.SetMinosErrors(false);
455  }
456 
457 
458  fBinFit = false;
459  fDataSize = data->Size();
460 
461 #ifdef DEBUG
462  int ipar = 0;
463  std::cout << "Fitter ParamSettings " << Config().ParamsSettings()[ipar].IsBound() << " lower limit " << Config().ParamsSettings()[ipar].LowerLimit() << " upper limit " << Config().ParamsSettings()[ipar].UpperLimit() << std::endl;
464 #endif
465 
466  // logl fit (error should be 0.5) set if different than default values (of 1)
469  }
470 
471  if (!fUseGradient) {
472  // do minimization without using the gradient
473  LogLikelihoodFCN<BaseFunc> logl(data,fFunc, useWeight, extended);
474  fFitType = logl.Type();
475  if (!DoMinimization (logl) ) return false;
476  if (useWeight) {
477  logl.UseSumOfWeightSquare();
478  if (!ApplyWeightCorrection(logl) ) return false;
479  }
480  return true;
481  }
482  else {
483  // use gradient : check if fFunc provides gradient
484  if (fConfig.MinimizerOptions().PrintLevel() > 0)
485  MATH_INFO_MSG("Fitter::DoLikelihoodFit","use gradient from model function");
486  std::shared_ptr<IGradModelFunction> gradFun = std::dynamic_pointer_cast<IGradModelFunction>(fFunc);
487  if (gradFun) {
488  if (extended) {
489  MATH_WARN_MSG("Fitter::DoLikelihoodFit","Extended unbinned fit with gradient not yet supported - do a not-extended fit");
490  }
491  LogLikelihoodFCN<BaseGradFunc> logl(data,gradFun,useWeight, extended);
492  fFitType = logl.Type();
493  if (!DoMinimization (logl) ) return false;
494  if (useWeight) {
495  logl.UseSumOfWeightSquare();
496  if (!ApplyWeightCorrection(logl) ) return false;
497  }
498  return true;
499  }
500  MATH_ERROR_MSG("Fitter::DoLikelihoodFit","wrong type of function - it does not provide gradient");
501  }
502  return false;
503 }
504 
505 
507 
508  std::shared_ptr<BinData> data = std::dynamic_pointer_cast<BinData>(fData);
509  assert(data);
510 
511  // perform a linear fit on a set of binned data
512  std::string prevminimizer = fConfig.MinimizerType();
513  fConfig.SetMinimizer("Linear");
514 
515  fBinFit = true;
516 
517  bool ret = DoLeastSquareFit();
518  fConfig.SetMinimizer(prevminimizer.c_str());
519  return ret;
520 }
521 
522 
524  // compute the Hesse errors according to configuration
525  // set in the parameters and append value in fit result
526  if (fObjFunction.get() == 0) {
527  MATH_ERROR_MSG("Fitter::CalculateHessErrors","Objective function has not been set");
528  return false;
529  }
530  // assume a fResult pointer always exists
531  assert (fResult.get() );
532 
533  // need a special treatment in case of weighted likelihood fit
534  // (not yet implemented)
535  if (fFitType == 2 && fConfig.UseWeightCorrection() ) {
536  MATH_ERROR_MSG("Fitter::CalculateHessErrors","Re-computation of Hesse errors not implemented for weighted likelihood fits");
537  MATH_INFO_MSG("Fitter::CalculateHessErrors","Do the Fit using configure option FitConfig::SetParabErrors()");
538  return false;
539  }
540  // if (!fUseGradient ) {
541  // ROOT::Math::FitMethodFunction * fcn = dynamic_cast< ROOT::Math::FitMethodFunction *>(fObjFunction.get());
542  // if (fcn && fcn->Type() == ROOT::Math::FitMethodFunction::kLogLikelihood) {
543  // if (!fBinFit) {
544  // ROOT::Math::LogLikelihoodFunction * nll = dynamic_cast< ROOT::Math::LogLikelihoodFunction *>(fcn);
545  // assert(nll);
546  // nll->UseSumOfWeightSquare(false);
547  // }
548  // else {
549  // ROOT::Math::PoissonLikelihoodFunction * nll = dynamic_cast< ROOT::Math::PoissonLikelihoodFunction *>(fcn);
550  // assert(nll);
551  // nll->UseSumOfWeightSquare(false);
552  // }
553  // // reset fcn in minimizer
554  // }
555 
556 
557  // create minimizer if not done or if name has changed
558  if ( !fMinimizer ||
559  fResult->MinimizerType().find(fConfig.MinimizerType()) == std::string::npos ) {
560  bool ret = DoInitMinimizer();
561  if (!ret) {
562  MATH_ERROR_MSG("Fitter::CalculateHessErrors","Error initializing the minimizer");
563  return false;
564  }
565  }
566 
567 
568  if (!fMinimizer ) {
569  MATH_ERROR_MSG("Fitter::CalculateHessErrors","Need to do a fit before calculating the errors");
570  return false;
571  }
572 
573  //run Hesse
574  bool ret = fMinimizer->Hesse();
575  if (!ret) MATH_WARN_MSG("Fitter::CalculateHessErrors","Error when calculating Hessian");
576 
577 
578  // update minimizer results with what comes out from Hesse
579  // in case is empty - create from a FitConfig
580  if (fResult->IsEmpty() )
581  fResult = std::auto_ptr<ROOT::Fit::FitResult>(new ROOT::Fit::FitResult(fConfig) );
582 
583 
584  // re-give a minimizer instance in case it has been changed
585  ret |= fResult->Update(fMinimizer, ret);
586 
587  // when possible get ncalls from FCN and set in fit result
589  fResult->fNCalls = GetNCallsFromFCN();
590  }
591 
592  // set also new errors in FitConfig
593  if (fConfig.UpdateAfterFit() && ret) DoUpdateFitConfig();
594 
595  return ret;
596 }
597 
598 
600  // compute the Minos errors according to configuration
601  // set in the parameters and append value in fit result
602  // normally Minos errors are computed just after the minimization
603  // (in DoMinimization) when creating the FItResult if the
604  // FitConfig::MinosErrors() flag is set
605 
606  if (!fMinimizer.get() ) {
607  MATH_ERROR_MSG("Fitter::CalculateMinosErrors","Minimizer does not exist - cannot calculate Minos errors");
608  return false;
609  }
610 
611  if (!fResult.get() || fResult->IsEmpty() ) {
612  MATH_ERROR_MSG("Fitter::CalculateMinosErrors","Invalid Fit Result - cannot calculate Minos errors");
613  return false;
614  }
615 
616  if (fFitType == 2 && fConfig.UseWeightCorrection() ) {
617  MATH_ERROR_MSG("Fitter::CalculateMinosErrors","Computation of MINOS errors not implemented for weighted likelihood fits");
618  return false;
619  }
620 
621  // set flag to compute Minos error to false in FitConfig to avoid that
622  // following minimizaiton calls perform unwanted Minos error calculations
623  fConfig.SetMinosErrors(false);
624 
625 
626  const std::vector<unsigned int> & ipars = fConfig.MinosParams();
627  unsigned int n = (ipars.size() > 0) ? ipars.size() : fResult->Parameters().size();
628  bool ok = false;
629  for (unsigned int i = 0; i < n; ++i) {
630  double elow, eup;
631  unsigned int index = (ipars.size() > 0) ? ipars[i] : i;
632  bool ret = fMinimizer->GetMinosError(index, elow, eup);
633  if (ret) fResult->SetMinosError(index, elow, eup);
634  ok |= ret;
635  }
636  if (!ok)
637  MATH_ERROR_MSG("Fitter::CalculateMinosErrors","Minos error calculation failed for all parameters");
638 
639  return ok;
640 }
641 
642 
643 
644 // traits for distinhuishing fit methods functions from generic objective functions
645 template<class Func>
646 struct ObjFuncTrait {
647  static unsigned int NCalls(const Func & ) { return 0; }
648  static int Type(const Func & ) { return -1; }
649  static bool IsGrad() { return false; }
650 };
651 template<>
652 struct ObjFuncTrait<ROOT::Math::FitMethodFunction> {
653  static unsigned int NCalls(const ROOT::Math::FitMethodFunction & f ) { return f.NCalls(); }
654  static int Type(const ROOT::Math::FitMethodFunction & f) { return f.Type(); }
655  static bool IsGrad() { return false; }
656 };
657 template<>
658 struct ObjFuncTrait<ROOT::Math::FitMethodGradFunction> {
659  static unsigned int NCalls(const ROOT::Math::FitMethodGradFunction & f ) { return f.NCalls(); }
660  static int Type(const ROOT::Math::FitMethodGradFunction & f) { return f.Type(); }
661  static bool IsGrad() { return true; }
662 };
663 
665  //initialize minimizer by creating it
666  // and set there the objective function
667  // obj function must have been copied before
668  assert(fObjFunction.get() );
669 
670  // check configuration and objective function
671  if ( fConfig.ParamsSettings().size() != fObjFunction->NDim() ) {
672  MATH_ERROR_MSG("Fitter::DoInitMinimizer","wrong function dimension or wrong size for FitConfig");
673  return false;
674  }
675 
676  // create first Minimizer
677  // using an auto_Ptr will delete the previous existing one
678  fMinimizer = std::shared_ptr<ROOT::Math::Minimizer> ( fConfig.CreateMinimizer() );
679  if (fMinimizer.get() == 0) {
680  MATH_ERROR_MSG("Fitter::FitFCN","Minimizer cannot be created");
681  return false;
682  }
683 
684  // in case of gradient function one needs to downcast the pointer
685  if (fUseGradient) {
686  const ROOT::Math::IMultiGradFunction * gradfcn = dynamic_cast<const ROOT::Math::IMultiGradFunction *> (fObjFunction.get() );
687  if (!gradfcn) {
688  MATH_ERROR_MSG("Fitter::DoInitMinimizer","wrong type of function - it does not provide gradient");
689  return false;
690  }
691  fMinimizer->SetFunction( *gradfcn);
692  }
693  else
694  fMinimizer->SetFunction( *fObjFunction);
695 
696 
697  fMinimizer->SetVariables(fConfig.ParamsSettings().begin(), fConfig.ParamsSettings().end() );
698 
699  // if requested parabolic error do correct error analysis by the minimizer (call HESSE)
700  if (fConfig.ParabErrors()) fMinimizer->SetValidError(true);
701 
702  return true;
703 
704 }
705 
706 
708  // perform the minimization (assume we have already initialized the minimizer)
709 
710  assert(fMinimizer );
711 
712  bool ret = fMinimizer->Minimize();
713 
714  // unsigned int ncalls = ObjFuncTrait<ObjFunc>::NCalls(*fcn);
715  // int fitType = ObjFuncTrait<ObjFunc>::Type(objFunc);
716 
717  if (!fResult) fResult = std::shared_ptr<FitResult> ( new FitResult() );
718  fResult->FillResult(fMinimizer,fConfig, fFunc, ret, fDataSize, fBinFit, chi2func );
719 
720  // when possible get ncalls from FCN and set in fit result
722  fResult->fNCalls = GetNCallsFromFCN();
723  }
724 
725  // fill information in fit result
726  fResult->fObjFunc = fObjFunction;
727  fResult->fFitData = fData;
728 
729 
730 #ifdef DEBUG
731  std::cout << "ROOT::Fit::Fitter::DoMinimization : ncalls = " << fResult->fNCalls << " type of objfunc " << fFitFitResType << " typeid: " << typeid(*fObjFunction).name() << " use gradient " << fUseGradient << std::endl;
732 #endif
733 
735  fResult->NormalizeErrors();
736 
737 
738 
739  // set also new parameter values and errors in FitConfig
740  if (fConfig.UpdateAfterFit() && ret) DoUpdateFitConfig();
741 
742  return ret;
743 }
744 
745 bool Fitter::DoMinimization(const BaseFunc & objFunc, const ROOT::Math::IMultiGenFunction * chi2func) {
746  // perform the minimization initializing the minimizer starting from a given obj function
747 
748  // keep also a copy of FCN function and set this in minimizer so they will be managed together
749  // (remember that cloned copy will still depends on data and model function pointers)
750  fObjFunction = std::auto_ptr<ROOT::Math::IMultiGenFunction> ( objFunc.Clone() );
751  if (!DoInitMinimizer()) return false;
752  return DoMinimization(chi2func);
753 }
754 
755 
757  // update the fit configuration after a fit using the obtained result
758  if (fResult->IsEmpty() || !fResult->IsValid() ) return;
759  for (unsigned int i = 0; i < fConfig.NPar(); ++i) {
761  par.SetValue( fResult->Value(i) );
762  if (fResult->Error(i) > 0) par.SetStepSize( fResult->Error(i) );
763  }
764 }
765 
767  // retrieve ncalls from the fit method functions
768  // this function is called when minimizer does not provide a way of returning the nnumber of function calls
769  int ncalls = 0;
770  if (!fUseGradient) {
771  const ROOT::Math::FitMethodFunction * fcn = dynamic_cast<const ROOT::Math::FitMethodFunction *>(fObjFunction.get());
772  if (fcn) ncalls = fcn->NCalls();
773  }
774  else {
775  const ROOT::Math::FitMethodGradFunction * fcn = dynamic_cast<const ROOT::Math::FitMethodGradFunction*>(fObjFunction.get());
776  if (fcn) ncalls = fcn->NCalls();
777  }
778  return ncalls;
779 }
780 
781 
782 bool Fitter::ApplyWeightCorrection(const ROOT::Math::IMultiGenFunction & loglw2, bool minimizeW2L) {
783  // apply correction for weight square
784  // Compute Hessian of the loglikelihood function using the sum of the weight squared
785  // This method assumes:
786  // - a fit has been done before and a covariance matrix exists
787  // - the objective function is a likelihood function and Likelihood::UseSumOfWeightSquare()
788  // has been called before
789 
790  if (fMinimizer.get() == 0) {
791  MATH_ERROR_MSG("Fitter::ApplyWeightCorrection","Must perform first a fit before applying the correction");
792  return false;
793  }
794 
795  unsigned int n = loglw2.NDim();
796  // correct errors for weight squared
797  std::vector<double> cov(n*n);
798  bool ret = fMinimizer->GetCovMatrix(&cov[0] );
799  if (!ret) {
800  MATH_ERROR_MSG("Fitter::ApplyWeightCorrection","Previous fit has no valid Covariance matrix");
801  return false;
802  }
803  // need to re-init the minimizer and set w2
804  fObjFunction = std::auto_ptr<ROOT::Math::IMultiGenFunction> ( loglw2.Clone() );
805  // need to re-initialize the minimizer for the changes applied in the
806  // objective functions
807  if (!DoInitMinimizer()) return false;
808 
809  //std::cout << "Running Hesse ..." << std::endl;
810 
811  // run eventually before a minimization
812  // ignore its error
813  if (minimizeW2L) fMinimizer->Minimize();
814  // run Hesse on the log-likelihood build using sum of weight squared
815  ret = fMinimizer->Hesse();
816  if (!ret) {
817  MATH_ERROR_MSG("Fitter::ApplyWeightCorrection","Error running Hesse on weight2 likelihood - cannot compute errors");
818  return false;
819  }
820 
821  if (fMinimizer->CovMatrixStatus() != 3) {
822  MATH_WARN_MSG("Fitter::ApplyWeightCorrection","Covariance matrix for weighted likelihood is not accurate, the errors may be not reliable");
823  if (fMinimizer->CovMatrixStatus() == 2)
824  MATH_WARN_MSG("Fitter::ApplyWeightCorrection","Covariance matrix for weighted likelihood was forced to be defined positive");
825  if (fMinimizer->CovMatrixStatus() <= 0)
826  // probably should have failed before
827  MATH_ERROR_MSG("Fitter::ApplyWeightCorrection","Covariance matrix for weighted likelihood is not valid !");
828  }
829 
830  // std::vector<double> c(n*n);
831  // ret = fMinimizer->GetCovMatrix(&c2[0] );
832  // if (!ret) std::cout << "Error reading cov matrix " << fMinimizer->Status() << std::endl;
833  // TMatrixDSym cmat2(n,&c2[0]);
834  // std::cout << "Cov matrix of w2 " << std::endl;
835  // cmat2.Print();
836  // cmat2.Invert();
837  // std::cout << "Hessian of w2 " << std::endl;
838  // cmat2.Print();
839 
840  // get Hessian matrix from weight-square likelihood
841  std::vector<double> hes(n*n);
842  ret = fMinimizer->GetHessianMatrix(&hes[0] );
843  if (!ret) {
844  MATH_ERROR_MSG("Fitter::ApplyWeightCorrection","Error retrieving Hesse on weight2 likelihood - cannot compute errors");
845  return false;
846  }
847 
848  // for debug
849  // std::cout << "Hessian W2 matrix " << std::endl;
850  // for (unsigned int i = 0; i < n; ++i) {
851  // for (unsigned int j = 0; j < n; ++j) {
852  // std::cout << std::setw(12) << hes[i*n + j] << " , ";
853  // }
854  // std::cout << std::endl;
855  // }
856 
857  // perform product of matvrix cov * hes * cov
858  // since we do not want to add matrix dependence do product by hand
859  // first do hes * cov
860  std::vector<double> tmp(n*n);
861  for (unsigned int i = 0; i < n; ++i) {
862  for (unsigned int j = 0; j < n; ++j) {
863  for (unsigned int k = 0; k < n; ++k)
864  tmp[i*n+j] += hes[i*n + k] * cov[k*n + j];
865  }
866  }
867  // do multiplication now cov * tmp save result
868  std::vector<double> newCov(n*n);
869  for (unsigned int i = 0; i < n; ++i) {
870  for (unsigned int j = 0; j < n; ++j) {
871  for (unsigned int k = 0; k < n; ++k)
872  newCov[i*n+j] += cov[i*n + k] * tmp[k*n + j];
873  }
874  }
875  // update fit result with new corrected covariance matrix
876  unsigned int k = 0;
877  for (unsigned int i = 0; i < n; ++i) {
878  fResult->fErrors[i] = std::sqrt( newCov[i*(n+1)] );
879  for (unsigned int j = 0; j <= i; ++j)
880  fResult->fCovMatrix[k++] = newCov[i *n + j];
881  }
882  //fResult->PrintCovMatrix(std::cout);
883 
884  return true;
885 }
886 
887 
888 
890  // return a pointer to the binned data used in the fit
891  // works only for chi2 or binned likelihood fits
892  // thus when the objective function stored is a Chi2Func or a PoissonLikelihood
893  // The funciton also set the model function correctly if it has not been set
894 
897 
900 
901  //MATH_INFO_MSG("Fitter::ExamineFCN","Objective function is not of a known type - FitData and ModelFunction objects are not available");
902  return;
903 }
904 
905 
906 
907 
908  } // end namespace Fit
909 
910 } // end namespace ROOT
911 
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Definition: IFunction.h:322
double par[1]
Definition: unuranDistr.cxx:38
void ExamineFCN()
look at the user provided FCN and get data and model function is they derive from ROOT::Fit FCN class...
Definition: Fitter.cxx:889
This namespace contains pre-defined functions to be used in conjuction with TExecutor::Map and TExecu...
Definition: StringConv.hxx:21
void(* MinuitFCN_t)(int &npar, double *gin, double &f, double *u, int flag)
fit using user provided FCN with Minuit-like interface If npar = 0 it is assumed that the parameters ...
Definition: Fitter.h:310
ROOT::Math::Minimizer * CreateMinimizer()
create a new minimizer according to chosen configuration
Definition: FitConfig.cxx:203
bool CalculateMinosErrors()
perform an error analysis on the result using MINOS To be called only after fitting and when a minimi...
Definition: Fitter.cxx:599
Fitter & operator=(const Fitter &rhs)
Assignment operator (disabled, class is not copyable)
Definition: Fitter.cxx:85
bool EvalFCN()
Perform a simple FCN evaluation.
Definition: Fitter.cxx:308
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
Definition: FitConfig.h:171
bool DoBinnedLikelihoodFit(bool extended=true)
binned likelihood fit
Definition: Fitter.cxx:369
const std::vector< unsigned int > & MinosParams() const
return vector of parameter indeces for which the Minos Error will be computed
Definition: FitConfig.h:187
LogLikelihoodFCN class for likelihood fits.
unsigned int NPar() const
number of parameters settings
Definition: FitConfig.h:100
std::shared_ptr< IModelFunction > fFunc
Definition: Fitter.h:494
virtual unsigned int NPoints() const
return the number of data points used in evaluating the function
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
Definition: UnBinData.h:47
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
bool DoLinearFit()
linear least square fit
Definition: Fitter.cxx:506
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
Definition: FitConfig.h:138
void SetErrorDef(double err)
set error def
#define MATH_WARN_MSG(loc, str)
Definition: Error.h:47
std::shared_ptr< ROOT::Fit::FitResult > fResult
copy of the fitted function containing on output the fit result
Definition: Fitter.h:496
MultiDimParamFunctionAdapter class to wrap a one-dimensional parametric function in a multi dimension...
bool CalculateHessErrors()
perform an error analysis on the result using the Hessian Errors are obtaied from the inverse of the ...
Definition: Fitter.cxx:523
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
Definition: FitConfig.h:80
void SetValue(double val)
set the value
void CreateParamsSettings(const ROOT::Math::IParamMultiFunction &func)
set the parameter settings from a model function.
Definition: FitConfig.cxx:174
double sqrt(double)
Fitter()
Default constructor.
Definition: Fitter.cxx:52
bool UseWeightCorrection() const
Apply Weight correction for error matrix computation.
Definition: FitConfig.h:183
bool DoInitMinimizer()
Definition: Fitter.cxx:664
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
int PrintLevel() const
non-static methods for retrieving options
virtual Type_t Type() const
return the type of method, override if needed
bool UpdateAfterFit() const
Update configuration after a fit using the FitResult.
Definition: FitConfig.h:180
bool ParabErrors() const
do analysis for parabolic errors
Definition: FitConfig.h:174
bool ApplyWeightCorrection(const ROOT::Math::IMultiGenFunction &loglw2, bool minimizeW2L=false)
apply correction in the error matrix for the weights for likelihood fits This method can be called on...
Definition: Fitter.cxx:782
const FitConfig & Config() const
access to the fit configuration (const method)
Definition: Fitter.h:382
#define MATH_ERROR_MSG(loc, str)
Definition: Error.h:50
void SetMinosErrors(bool on=true)
set Minos erros computation to be performed after fitting
Definition: FitConfig.h:198
Chi2FCN class for binnned fits using the least square methods.
Definition: Chi2FCN.h:68
~Fitter()
Destructor.
Definition: Fitter.cxx:71
std::shared_ptr< ROOT::Fit::FitData > fData
pointer to used minimizer
Definition: Fitter.h:500
FitConfig fConfig
Definition: Fitter.h:492
#define MATH_INFO_MSG(loc, str)
Definition: Error.h:44
void SetMinimizer(const char *type, const char *algo=0)
set minimizer type
Definition: FitConfig.h:152
void SetStepSize(double err)
set the step size
IParamFunction interface (abstract class) describing multi-dimensional parameteric functions It is a ...
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
Definition: Chi2FCN.h:148
BasicFCN class: base class for the objective functions used in the fits It has a reference to the dat...
Definition: BasicFCN.h:44
Fitter class, entry point for performing all type of fits.
Definition: Fitter.h:94
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.
bool FitFCN(const ROOT::Math::FitMethodFunction &fcn, const double *params=0)
Fit using a FitMethodFunction interface.
Definition: Fitter.cxx:253
const std::vector< ROOT::Fit::ParameterSettings > & ParamsSettings() const
get the vector of parameter settings (const method)
Definition: FitConfig.h:90
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
bool FitFCN()
Perform a fit with the previously set FCN function.
Definition: Fitter.cxx:290
void UseSumOfWeightSquare(bool on=true)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition: BinData.h:61
void SetFunction(const IModelFunction &func, bool useGradient=false)
Set the fitted function (model function) from a parametric function interface.
Definition: Fitter.cxx:104
std::shared_ptr< ROOT::Math::Minimizer > fMinimizer
pointer to the object containing the result of the fit
Definition: Fitter.h:498
Type
enumeration specifying the integration types.
Interface (abstract class) for parametric one-dimensional gradient functions providing in addition to...
class containg the result of the fit and all the related information (fitted parameter values...
Definition: FitResult.h:52
double f(double x)
Specialized IParamFunction interface (abstract class) for one-dimensional parametric functions It is ...
FitMethodFunction class Interface for objective functions (like chi2 and likelihood used in the fit) ...
Definition: Fitter.h:57
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
Interface (abstract class) for parametric gradient multi-dimensional functions providing in addition ...
const std::string & MinimizerType() const
return type of minimizer package
Definition: FitConfig.h:160
double func(double *x, double *p)
Definition: stressTF1.cxx:213
std::shared_ptr< ROOT::Math::IMultiGenFunction > fObjFunction
pointer to the fit data (binned or unbinned data)
Definition: Fitter.h:502
bool GetDataFromFCN()
internal functions to get data set and model function from FCN useful for fits done with customized F...
Definition: Fitter.h:510
bool DoLeastSquareFit()
least square fit
Definition: Fitter.cxx:328
bool useGradient
virtual unsigned int NCalls() const
return the total number of function calls (overrided if needed)
bool MinosErrors() const
do minos errros analysis on the parameters
Definition: FitConfig.h:177
bool fUseGradient
Definition: Fitter.h:482
bool SetFCN(unsigned int npar, Function &fcn, const double *params=0, unsigned int dataSize=0, bool chi2fit=false)
Set a generic FCN function as a C++ callable object implementing double () (const double *) Note that...
Definition: Fitter.h:543
MultiDimParamGradFunctionAdapter class to wrap a one-dimensional parametric gradient function in a mu...
void SetParamsSettings(unsigned int npar, const double *params, const double *vstep=0)
set the parameter settings from number of parameters and a vector of values and optionally step value...
Definition: FitConfig.cxx:136
double ErrorDef() const
error definition
int GetNCallsFromFCN()
Definition: Fitter.cxx:766
void DoUpdateFitConfig()
Definition: Fitter.cxx:756
double result[121]
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:63
bool DoMinimization(const BaseFunc &f, const ROOT::Math::IMultiGenFunction *chifunc=0)
do minimization
Definition: Fitter.cxx:745
const Int_t n
Definition: legend1.C:16
double gDefaultErrorDef
Definition: Fitter.cxx:49
virtual IBaseFunctionMultiDim * Clone() const =0
Clone a function.
bool DoUnbinnedLikelihoodFit(bool extended=false)
un-binned likelihood fit
Definition: Fitter.cxx:439