High Level Factory: creation of a simple model
[#1] INFO:Minimization -- p.d.f. provides expected number of events, including extended term in likelihood.
[#1] INFO:Fitting -- RooAbsPdf::fitTo(sum) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_sum_sumData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
Minuit2Minimizer: Minimize with max-calls 2500 convergence for edm < 1 strategy 1
Minuit2Minimizer : Valid minimum - status = 0
FVAL = -18178.1839194288223
Edm = 7.61294712667117464e-05
Nfcn = 112
argpar = -22.9054 +/- 3.42143 (limited)
mean = 5.27987 +/- 0.000215769 (limited)
nbkg = 1612.74 +/- 44.6723 (limited)
nsig = 387.37 +/- 27.7674 (limited)
width = 0.00300965 +/- 0.000199023 (limited)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Plotting -- RooAbsPdf::plotOn(sum) directly selected PDF components: (argus)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(sum) indirectly selected PDF components: ()
import ROOT
card_name = "HLFavtoryexample.rs"
with open(card_name, "w") as f:
f.write(
"// The simplest card\n\n")
f.write(
"gauss = Gaussian(mes[5.20,5.30],mean[5.28,5.2,5.3],width[0.0027,0.001,1]);\n")
f.write(
"argus = ArgusBG(mes,5.291,argpar[-20,-100,-1]);\n")
f.write(
"sum = SUM(nsig[200,0,10000]*gauss,nbkg[800,0,10000]*argus);\n\n")
sumpdf = w["sum"]
argus = w["argus"]
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
- Date
- July 2022
- Authors
- Artem Busorgin, Danilo Piparo (C++ version)
Definition in file rs601_HLFactoryexample.py.