This tutorial explains the concept of global observables in RooFit, and showcases how their values can be stored either in the model or in the dataset.
Introduction
Note: in this tutorial, we are multiplying the likelihood with an additional likelihood to constrain the parameters with auxiliary measurements. This is different from the rf604_constraints
tutorial, where the likelihood is multiplied with a Bayesian prior to constrain the parameters.
With RooFit, you usually optimize some model parameters p
to maximize the likelihood L
given the per-event or per-bin observations x
:
\[ L( x | p ) \]
Often, the parameters are constrained with some prior likelihood C
, which doesn't depend on the observables x
:
\[ L'( x | p ) = L( x | p ) * C( p ) \]
Usually, these constraint terms depend on some auxiliary measurements of other observables g
. The constraint term is then the likelihood of the so-called global observables:
\[ L'( x | p ) = L( x | p ) * C( g | p ) \]
For example, think of a model where the true luminosity lumi
is a nuisance parameter that is constrained by an auxiliary measurement lumi_obs
with uncertainty lumi_obs_sigma
:
\[ L'(data | mu, lumi) = L(data | mu, lumi) * \text{Gauss}(lumi_obs | lumi, lumi_obs_sigma) \]
As a Gaussian is symmetric under exchange of the observable and the mean parameter, you can also sometimes find this equivalent but less conventional formulation for Gaussian constraints:
\[ L'(data | mu, lumi) = L(data | mu, lumi) * \text{Gauss}(lumi | lumi_obs, lumi_obs_sigma) \]
If you wanted to constrain a parameter that represents event counts, you would use a Poissonian constraint, e.g.:
\[ L'(data | mu, count) = L(data | mu, count) * \text{Poisson}(count_obs | count) \]
Unlike a Gaussian, a Poissonian is not symmetric under exchange of the observable and the parameter, so here you need to be more careful to follow the global observable prescription correctly.
import ROOT
ROOT.RooMsgService.instance().getStream(1).removeTopic(ROOT.RooFit.Minimization)
ROOT.RooMsgService.instance().getStream(1).removeTopic(ROOT.RooFit.Fitting)
x = ROOT.RooRealVar("x", "x", -10, 10)
mu = ROOT.RooRealVar("mu", "mu", 0.0, -10, 10)
sigma = ROOT.RooRealVar("sigma", "sigma", 1.0, 0.1, 2.0)
gauss = ROOT.RooGaussian("gauss", "gauss", x, mu, sigma)
mu_obs = ROOT.RooRealVar("mu_obs", "mu_obs", 1.0, -10, 10)
mu_obs.setConstant()
constraint = ROOT.RooGaussian("constraint", "constraint", mu_obs, mu, 0.1)
model = ROOT.RooProdPdf("model", "model", [gauss, constraint])
dataGlob = model.generate({mu_obs}, 1)
mu_obs_orig_val = mu_obs.getVal()
ROOT.RooArgSet(mu_obs).assign(dataGlob.get(0))
data = model.generate({x}, 50)
data.setGlobalObservables({mu_obs})
mu_obs.setVal(mu_obs_orig_val)
modelParameters = model.getParameters(data.get())
origParameters = modelParameters.snapshot()
print("1. model.fitTo(*data, GlobalObservables(mu_obs))")
print("------------------------------------------------")
model.fitTo(data, GlobalObservables=mu_obs, PrintLevel=-1, Save=
True).
Print()
modelParameters.assign(origParameters)
print("2. model.fitTo(*data)")
print("---------------------")
model.fitTo(data, PrintLevel=-1, Save=
True).
Print()
modelParameters.assign(origParameters)
print('3. model.fitTo(*data, GlobalObservables(mu_obs), GlobalObservablesSource("model"))')
print("------------------------------------------------")
model.fitTo(data, GlobalObservables=mu_obs, GlobalObservablesSource=
"model", PrintLevel=-1, Save=
True).
Print()
modelParameters.assign(origParameters)
void Print(GNN_Data &d, std::string txt="")
RooFitResult: minimized FCN value: 68.2482, estimated distance to minimum: 9.80327e-07
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
mu 5.2717e-02 +/- 8.11e-02
sigma 9.7190e-01 +/- 9.73e-02
RooFitResult: minimized FCN value: 68.2482, estimated distance to minimum: 9.80327e-07
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
mu 5.2717e-02 +/- 8.11e-02
sigma 9.7190e-01 +/- 9.73e-02
RooFitResult: minimized FCN value: 83.7181, estimated distance to minimum: 6.67911e-07
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
mu 7.4744e-01 +/- 9.68e-02
sigma 1.2451e+00 +/- 1.38e-01
1. model.fitTo(*data, GlobalObservables(mu_obs))
------------------------------------------------
2. model.fitTo(*data)
---------------------
3. model.fitTo(*data, GlobalObservables(mu_obs), GlobalObservablesSource("model"))
------------------------------------------------
- Date
- January 2022
- Author
- Jonas Rembser
Definition in file rf613_global_observables.py.