Logo ROOT  
Reference Guide
rf612_recoverFromInvalidParameters.py File Reference

Namespaces

namespace  rf612_recoverFromInvalidParameters
 

Detailed Description

View in nbviewer Open in SWAN
Likelihood and minimization: Recover from regions where the function is not defined.

We demonstrate improved recovery from disallowed parameters. For this, we use a polynomial PDF of the form

\[ \mathrm{Pol2} = \mathcal{N} \left( c + a_1 \cdot x + a_2 \cdot x^2 + 0.01 \cdot x^3 \right), \]

where \( \mathcal{N} \) is a normalisation factor. Unless the parameters are chosen carefully, this function can be negative, and hence, it cannot be used as a PDF. In this case, RooFit passes an error to the minimiser, which might try to recover.

[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#0] ERROR:Eval -- RooAbsReal::logEvalError(pol3) evaluation error,
origin : RooPolynomial::pol3[ x=x coefList=(a1,a2,a3) ]
message : p.d.f normalization integral is zero or negative: -2220.000000
server values: x=x=0, coefList=(a1 = 2.60781 +/- 11.9002,a2 = -1 +/- 11.5683,a3 = 0.01)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
**********
** 15 **SET NOGRAD
**********
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1 a1 1.00000e+01 1.19002e+01 -1.00000e+01 2.00000e+01
2 a2 -1.00000e+00 1.15683e+01 -1.00000e+01 2.00000e+01
**********
** 16 **SET ERR 0.5
**********
**********
** 17 **SET PRINT 0
**********
**********
** 18 **SET STR 1
**********
**********
** 19 **MIGRAD 1000 1
**********
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=-858.564 FROM MIGRAD STATUS=CONVERGED 243 CALLS 244 TOTAL
EDM=7.33131e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 a1 -4.98209e-01 2.27025e-02 2.77075e-05 -2.18163e+00
2 a2 1.98271e-01 5.64128e-03 1.48249e-05 -2.54212e+01
ERR DEF= 0.5
**********
** 20 **SET ERR 0.5
**********
**********
** 21 **SET PRINT 0
**********
**********
** 22 **HESSE 1000
**********
FCN=-858.564 FROM HESSE STATUS=OK 10 CALLS 254 TOTAL
EDM=7.3377e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 a1 -4.98209e-01 2.27254e-02 8.14968e-06 -3.41822e+01
2 a2 1.98271e-01 5.64697e-03 7.41245e-06 3.10901e+01
ERR DEF= 0.5
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
RooFitResult: minimized FCN value: 0, estimated distance to minimum: 0
covariance matrix quality: Approximation only, not accurate
Status : MINIMIZE=200 HESSE=200
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
a1 2.6078e+00 +/- 1.19e+01
a2 -1.0000e+00 +/- 1.16e+01
RooFitResult: minimized FCN value: 29650.9, estimated distance to minimum: 7.3377e-05
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0
Floating Parameter FinalValue +/- Error
-------------------- --------------------------
a1 -4.9821e-01 +/- 2.27e-02
a2 1.9827e-01 +/- 5.65e-03
-------------- Starting second fit ---------------
Without recovery, the fitter encountered 66 invalid function values. The parameters are unchanged.
With recovery, the fitter encountered 66 invalid function values, but the parameters are fitted.
import ROOT
# Create a fit model:
# The polynomial is notoriously unstable, because it can quickly go negative.
# Since PDFs need to be positive, one often ends up with an unstable fit model.
x = ROOT.RooRealVar("x", "x", -15, 15)
a1 = ROOT.RooRealVar("a1", "a1", -0.5, -10.0, 20.0)
a2 = ROOT.RooRealVar("a2", "a2", 0.2, -10.0, 20.0)
a3 = ROOT.RooRealVar("a3", "a3", 0.01)
pdf = ROOT.RooPolynomial("pol3", "c + a1 * x + a2 * x*x + 0.01 * x*x*x", x, [a1, a2, a3])
# Create toy data with all-positive coefficients:
data = pdf.generate(x, 10000)
# For plotting.
# We create pointers to the plotted objects. We want these objects to leak out of the function,
# so we can still see them after it returns.
c = ROOT.TCanvas()
frame = x.frame()
data.plotOn(frame, Name="data")
# Plotting a PDF with disallowed parameters doesn't work. We would get a lot of error messages.
# Therefore, we disable plotting messages in RooFit's message streams:
ROOT.RooMsgService.instance().getStream(0).removeTopic(ROOT.RooFit.Plotting)
ROOT.RooMsgService.instance().getStream(1).removeTopic(ROOT.RooFit.Plotting)
# RooFit before ROOT 6.24
# --------------------------------
# Before 6.24, RooFit wasn't able to recover from invalid parameters. The minimiser just errs around
# the starting values of the parameters without finding any improvement.
# Set up the parameters such that the PDF would come out negative. The PDF is now undefined.
a1.setVal(10.0)
a2.setVal(-1.0)
# Perform a fit:
fitWithoutRecovery = pdf.fitTo(
data,
Save=True,
RecoverFromUndefinedRegions=0.0, # This is how RooFit behaved prior to ROOT 6.24
PrintEvalErrors=-1, # We are expecting a lot of evaluation errors. -1 switches off printing.
PrintLevel=-1,
)
pdf.plotOn(frame, LineColor="r", Name="noRecovery")
# RooFit since ROOT 6.24
# --------------------------------
# The minimiser gets information about the "badness" of the violation of the function definition. It uses this
# to find its way out of the disallowed parameter regions.
print("\n\n\n-------------- Starting second fit ---------------\n\n")
# Reset the parameters such that the PDF is again undefined.
a1.setVal(10.0)
a2.setVal(-1.0)
# Fit again, but pass recovery information to the minimiser:
fitWithRecovery = pdf.fitTo(
data,
Save=True,
RecoverFromUndefinedRegions=1.0, # The magnitude of the recovery information can be chosen here.
# Higher values mean more aggressive recovery.
PrintEvalErrors=-1, # We are still expecting a few evaluation errors.
PrintLevel=0,
)
pdf.plotOn(frame, LineColor="b", Name="recovery")
# Collect results and plot.
# --------------------------------
# We print the two fit results, and plot the fitted curves.
# The curve of the fit without recovery cannot be plotted, because the PDF is undefined if a2 < 0.
fitWithoutRecovery.Print()
print(
"Without recovery, the fitter encountered {}".format(fitWithoutRecovery.numInvalidNLL())
+ " invalid function values. The parameters are unchanged.\n"
)
fitWithRecovery.Print()
print(
"With recovery, the fitter encountered {}".format(fitWithoutRecovery.numInvalidNLL())
+ " invalid function values, but the parameters are fitted.\n"
)
legend = ROOT.TLegend(0.5, 0.7, 0.9, 0.9)
legend.SetBorderSize(0)
legend.SetFillStyle(0)
legend.AddEntry("data", "Data", "P")
legend.AddEntry("noRecovery", "Without recovery (cannot be plotted)", "L")
legend.AddEntry("recovery", "With recovery", "L")
frame.Draw()
legend.Draw()
c.Draw()
c.SaveAs("rf612_recoverFromInvalidParameters.png")
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
Date
June 2021
Author
Harshal Shende, Stephan Hageboeck (C++ version)

Definition in file rf612_recoverFromInvalidParameters.py.