void rf510_wsnamedsets()
{
std::unique_ptr<RooDataSet>
data{model->
generate(*
w->set(
"observables"), 1000)};
w->loadSnapshot(
"reference_fit");
w->loadSnapshot(
"reference_fit_bkgonly");
new TCanvas(
"rf510_wsnamedsets",
"rf503_wsnamedsets", 600, 600);
gPad->SetLeftMargin(0.15);
}
{
RooRealVar mean(
"mean",
"mean of gaussians", 5, 0, 10);
w.defineSet(
"parameters", *params);
w.defineSet(
"observables",
x);
w.saveSnapshot(
"reference_fit", *params,
true);
w.saveSnapshot(
"reference_fit_bkgonly", *params,
true);
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
Abstract interface for all probability density functions.
RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={}, const RooCmdArg &arg10={}) const override
Helper calling plotOn(RooPlot*, RooLinkedList&) const.
RooFit::OwningPtr< RooFitResult > fitTo(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Fit PDF to given dataset.
RooFit::OwningPtr< RooDataSet > generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={})
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
Efficient implementation of a sum of PDFs of the form.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Chebychev polynomial p.d.f.
Plot frame and a container for graphics objects within that frame.
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
Variable that can be changed from the outside.
Persistable container for RooFit projects.
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
RooCmdArg PrintLevel(Int_t code)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
[#0] WARNING:InputArguments -- The parameter 'sigma1' with range [-inf, inf] of the RooGaussian 'sig1' exceeds the safe range of (0, inf). Advise to limit its range.
[#0] WARNING:InputArguments -- The parameter 'sigma2' with range [-inf, inf] of the RooGaussian 'sig2' exceeds the safe range of (0, inf). Advise to limit its range.
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooAddPdf::model
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooChebychev::bkg
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::x
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::a0
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::a1
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::bkgfrac
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooAddPdf::sig
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooGaussian::sig1
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::mean
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::sigma1
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::sig1frac
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooGaussian::sig2
[#1] INFO:ObjectHandling -- RooWorkspace::import(w) importing RooRealVar::sigma2
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_modelData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_modelData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#0] ERROR:Minimization -- RooMinimizer::calculateHessErrors() Error when calculating Hessian
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_modelData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
RooWorkspace(w) w contents
variables
---------
(a0,a1,bkgfrac,mean,sig1frac,sigma1,sigma2,x)
p.d.f.s
-------
RooChebychev::bkg[ x=x coefList=(a0,a1) ] = 1
RooAddPdf::model[ bkgfrac * bkg + [%] * sig ] = 1/1
RooAddPdf::sig[ sig1frac * sig1 + [%] * sig2 ] = 0.999388/1
RooGaussian::sig1[ x=x mean=mean sigma=sigma1 ] = 0.999291
RooGaussian::sig2[ x=x mean=mean sigma=sigma2 ] = 0.999823
parameter snapshots
-------------------
reference_fit = (a0=0.500613 +/- 0.023199,a1=0.160315 +/- 0.0373121,bkgfrac=0.504699 +/- 0.0113933,mean=5.01883 +/- 0.0101222,sigma1=0.5[C],sig1frac=0.8179 +/- 0.0374037,sigma2=1[C])
reference_fit_bkgonly = (a0=0.474264 +/- 0,a1=6.8252e-12 +/- 0,bkgfrac=1[C],mean=5.01883 +/- 0,sigma1=0.5[C],sig1frac=0.8179 +/- 0,sigma2=1[C])
named sets
----------
observables:(x)
parameters:(a0,a1,bkgfrac,mean,sig1frac,sigma1,sigma2)