ROOT   Reference Guide
rf502_wspacewrite.py File Reference

## Namespaces

namespace  rf502_wspacewrite

## Detailed Description

Organization and simultaneous fits: creating and writing a workspace

import ROOT
# Create model and dataset
# -----------------------------------------------
# Declare observable x
x = ROOT.RooRealVar("x", "x", 0, 10)
# Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and
# their parameters
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5, 0, 10)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
# Build Chebychev polynomial pdf
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0)
a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0.0, 1.0)
bkg = ROOT.RooChebychev("bkg", "Background", x, [a0, a1])
# Sum the signal components into a composite signal pdf
sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0)
sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac])
# Sum the composite signal and background
bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0.0, 1.0)
model = ROOT.RooAddPdf("model", "g1+g2+a", [bkg, sig], [bkgfrac])
# Generate a data sample of 1000 events in x from model
data = model.generate({x}, 1000)
# Create workspace, import data and model
# -----------------------------------------------------------------------------
# Create a empty workspace
w = ROOT.RooWorkspace("w", "workspace")
# Import model and all its components into the workspace
w.Import(model)
# Import data into the workspace
w.Import(data)
# Print workspace contents
w.Print()
# Save workspace in file
# -------------------------------------------
# Save the workspace into a ROOT file
w.writeToFile("rf502_workspace_py.root")
Date
February 2018

Definition in file rf502_wspacewrite.py.