Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf402_datahandling.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Data and categories: tools for manipulation of (un)binned datasets

#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooGaussian.h"
#include "RooCategory.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TFile.h"
using namespace RooFit;
// WVE Add reduction by range
{
// Binned (RooDataHist) and unbinned datasets (RooDataSet) share
// many properties and inherit from a common abstract base class
// (RooAbsData), that provides an interface for all operations
// that can be performed regardless of the data format
RooRealVar x("x", "x", -10, 10);
RooRealVar y("y", "y", 0, 40);
RooCategory c("c", "c");
c.defineType("Plus", +1);
c.defineType("Minus", -1);
// B a s i c O p e r a t i o n s o n u n b i n n e d d a t a s e t s
// --------------------------------------------------------------
// RooDataSet is an unbinned dataset (a collection of points in N-dimensional space)
RooDataSet d("d", "d", RooArgSet(x, y, c));
// Unlike RooAbsArgs (RooAbsPdf,RooFormulaVar,....) datasets are not attached to
// the variables they are constructed from. Instead they are attached to an internal
// clone of the supplied set of arguments
// Fill d with dummy values
Int_t i;
for (i = 0; i < 1000; i++) {
x = i / 50 - 10;
y = sqrt(1.0 * i);
c.setLabel((i % 2) ? "Plus" : "Minus");
// We must explicitly refer to x,y,c here to pass the values because
// d is not linked to them (as explained above)
d.add(RooArgSet(x, y, c));
}
d.Print("v");
cout << endl;
// The get() function returns a pointer to the internal copy of the RooArgSet(x,y,c)
// supplied in the constructor
const RooArgSet *row = d.get();
row->Print("v");
cout << endl;
// Get with an argument loads a specific data point in row and returns
// a pointer to row argset. get() always returns the same pointer, unless
// an invalid row number is specified. In that case a null ptr is returned
d.get(900)->Print("v");
cout << endl;
// R e d u c i n g , A p p e n d i n g a n d M e r g i n g
// -------------------------------------------------------------
// The reduce() function returns a new dataset which is a subset of the original
cout << endl << ">> d1 has only columns x,c" << endl;
std::unique_ptr<RooAbsData> d1{d.reduce({x, c})};
d1->Print("v");
cout << endl << ">> d2 has only column y" << endl;
std::unique_ptr<RooAbsData> d2{d.reduce({y})};
d2->Print("v");
cout << endl << ">> d3 has only the points with y>5.17" << endl;
std::unique_ptr<RooAbsData> d3{d.reduce("y>5.17")};
d3->Print("v");
cout << endl << ">> d4 has only columns x,c for data points with y>5.17" << endl;
std::unique_ptr<RooAbsData> d4{d.reduce({x, c}, "y>5.17")};
d4->Print("v");
// The merge() function adds two data set column-wise
cout << endl << ">> merge d2(y) with d1(x,c) to form d1(x,c,y)" << endl;
static_cast<RooDataSet&>(*d1).merge(&static_cast<RooDataSet&>(*d2));
d1->Print("v");
// The append() function adds two datasets row-wise
cout << endl << ">> append data points of d3 to d1" << endl;
static_cast<RooDataSet&>(*d1).append(static_cast<RooDataSet&>(*d3));
d1->Print("v");
// O p e r a t i o n s o n b i n n e d d a t a s e t s
// ---------------------------------------------------------
// A binned dataset can be constructed empty, from an unbinned dataset, or
// from a ROOT native histogram (TH1,2,3)
cout << ">> construct dh (binned) from d(unbinned) but only take the x and y dimensions," << endl
<< ">> the category 'c' will be projected in the filling process" << endl;
// The binning of real variables (like x,y) is done using their fit range
// 'get/setRange()' and number of specified fit bins 'get/setBins()'.
// Category dimensions of binned datasets get one bin per defined category state
x.setBins(10);
y.setBins(10);
RooDataHist dh("dh", "binned version of d", RooArgSet(x, y), d);
dh.Print("v");
RooPlot *yframe = y.frame(Bins(10), Title("Operations on binned datasets"));
dh.plotOn(yframe); // plot projection of 2D binned data on y
// Examine the statistics of a binned dataset
cout << ">> number of bins in dh : " << dh.numEntries() << endl;
cout << ">> sum of weights in dh : " << dh.sum(false) << endl;
cout << ">> integral over histogram: " << dh.sum(true) << endl; // accounts for bin volume
// Locate a bin from a set of coordinates and retrieve its properties
x = 0.3;
y = 20.5;
cout << ">> retrieving the properties of the bin enclosing coordinate (x,y) = (0.3,20.5) " << endl;
cout << " bin center:" << endl;
dh.get(RooArgSet(x, y))->Print("v"); // load bin center coordinates in internal buffer
cout << " weight = " << dh.weight() << endl; // return weight of last loaded coordinates
// Reduce the 2-dimensional binned dataset to a 1-dimensional binned dataset
//
// All reduce() methods are interfaced in RooAbsData. All reduction techniques
// demonstrated on unbinned datasets can be applied to binned datasets as well.
cout << ">> Creating 1-dimensional projection on y of dh for bins with x>0" << endl;
std::unique_ptr<RooAbsData> dh2{dh.reduce(y, "x>0")};
dh2->Print("v");
// Add dh2 to yframe and redraw
dh2->plotOn(yframe, LineColor(kRed), MarkerColor(kRed));
// S a v i n g a n d l o a d i n g f r o m f i l e
// -------------------------------------------------------
// Datasets can be persisted with ROOT I/O
cout << endl << ">> Persisting d via ROOT I/O" << endl;
TFile f("rf402_datahandling.root", "RECREATE");
d.Write();
f.ls();
// To read back in future session:
// > TFile f("rf402_datahandling.root") ;
// > RooDataSet* d = (RooDataSet*) f.FindObject("d") ;
new TCanvas("rf402_datahandling", "rf402_datahandling", 600, 600);
gPad->SetLeftMargin(0.15);
yframe->GetYaxis()->SetTitleOffset(1.4);
yframe->Draw();
}
#define d(i)
Definition RSha256.hxx:102
#define f(i)
Definition RSha256.hxx:104
#define c(i)
Definition RSha256.hxx:101
int Int_t
Definition RtypesCore.h:45
@ kRed
Definition Rtypes.h:66
#define gPad
Storage_t const & get() const
Const access to the underlying stl container.
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Object to represent discrete states.
Definition RooCategory.h:28
Container class to hold N-dimensional binned data.
Definition RooDataHist.h:40
Container class to hold unbinned data.
Definition RooDataSet.h:33
bool merge(RooDataSet *data1, RooDataSet *data2=nullptr, RooDataSet *data3=nullptr, RooDataSet *data4=nullptr, RooDataSet *data5=nullptr, RooDataSet *data6=nullptr)
void append(RooDataSet &data)
Add all data points of given data set to this data set.
Plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:43
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
Definition RooPlot.cxx:185
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
Definition RooPlot.h:132
TAxis * GetYaxis() const
Definition RooPlot.cxx:1224
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:597
Variable that can be changed from the outside.
Definition RooRealVar.h:37
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:298
The Canvas class.
Definition TCanvas.h:23
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Definition TFile.h:53
RooCmdArg Bins(Int_t nbin)
RooCmdArg MarkerColor(Color_t color)
RooCmdArg LineColor(Color_t color)
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition JSONIO.h:26
const char * Title
Definition TXMLSetup.cxx:68
DataStore d (d)
Contains 1000 entries
Observables:
1) x = 9 L(-10 - 10) "x"
2) y = 31.607 L(0 - 40) "y"
3) c = Plus(idx = 1)
"c"
1) 0x559206498d40 RooRealVar:: x = 9 L(-10 - 10) "x"
2) 0x5592056e8360 RooRealVar:: y = 31.607 L(0 - 40) "y"
3) 0x559208dc4cc0 RooCategory:: c = Plus(idx = 1)
"c"
1) 0x559206498d40 RooRealVar:: x = 8 L(-10 - 10) "x"
2) 0x5592056e8360 RooRealVar:: y = 30 L(0 - 40) "y"
3) 0x559208dc4cc0 RooCategory:: c = Minus(idx = -1)
"c"
>> d1 has only columns x,c
DataStore d (d)
Contains 1000 entries
Observables:
1) x = 9 L(-10 - 10) "x"
2) c = Plus(idx = 1)
"c"
>> d2 has only column y
DataStore d (d)
Contains 1000 entries
Observables:
1) y = 31.607 L(0 - 40) "y"
>> d3 has only the points with y>5.17
DataStore d (d)
Contains 973 entries
Observables:
1) x = 9 L(-10 - 10) "x"
2) y = 31.607 L(0 - 40) "y"
3) c = Plus(idx = 1)
"c"
>> d4 has only columns x,c for data points with y>5.17
DataStore d (d)
Contains 973 entries
Observables:
1) x = 9 L(-10 - 10) "x"
2) c = Plus(idx = 1)
"c"
>> merge d2(y) with d1(x,c) to form d1(x,c,y)
DataStore d (d)
Contains 1000 entries
Observables:
1) x = 9 L(-10 - 10) "x"
2) c = Plus(idx = 1)
"c"
3) y = 31.607 L(0 - 40) "y"
>> append data points of d3 to d1
DataStore d (d)
Contains 1973 entries
Observables:
1) x = 9 L(-10 - 10) "x"
2) c = Plus(idx = 1)
"c"
3) y = 31.607 L(0 - 40) "y"
>> construct dh (binned) from d(unbinned) but only take the x and y dimensions,
>> the category 'c' will be projected in the filling process
DataStore dh (binned version of d)
Contains 100 entries
Observables:
1) x = 9 L(-10 - 10) B(10) "x"
2) y = 38 L(0 - 40) B(10) "y"
Binned Dataset dh (binned version of d)
Contains 100 bins with a total weight of 1000
Observables: 1) x = 9 L(-10 - 10) B(10) "x"
2) y = 38 L(0 - 40) B(10) "y"
>> number of bins in dh : 100
>> sum of weights in dh : 1000
>> integral over histogram: 8000
>> retrieving the properties of the bin enclosing coordinate (x,y) = (0.3,20.5)
bin center:
1) 0x559207bc4a10 RooRealVar:: x = 1 L(-10 - 10) B(10) "x"
2) 0x559207bcbac0 RooRealVar:: y = 22 L(0 - 40) B(10) "y"
weight = 76
>> Creating 1-dimensional projection on y of dh for bins with x>0
DataStore dh (binned version of d)
Contains 10 entries
Observables:
1) y = 38 L(0 - 40) B(10) "y"
Binned Dataset dh (binned version of d)
Contains 10 bins with a total weight of 500
Observables: 1) y = 38 L(0 - 40) B(10) "y"
[#1] INFO:Plotting -- RooPlot::updateFitRangeNorm: New event count of 500 will supersede previous event count of 1000 for normalization of PDF projections
>> Persisting d via ROOT I/O
TFile** rf402_datahandling.root
TFile* rf402_datahandling.root
KEY: RooDataSet d;1 d
KEY: TProcessID ProcessID0;1 ef88bc5c-a3f7-11ef-afdb-942c8a89beef
Date
July 2008
Author
Wouter Verkerke

Definition in file rf402_datahandling.C.