Multidimensional models: using the likelihood ratio technique to construct a signal enhanced one-dimensional projection of a multi-dimensional pdf
import ROOT
frame =
x.frame(Title=
"Projection of 3D data and pdf on X", Bins=40)
frame2 =
x.frame(Title=
"Same projection on X with LLratio(y,z)>0.7", Bins=40)
c =
ROOT.TCanvas(
"rf316_llratioplot",
"rf316_llratioplot", 800, 400)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x integrates over variables (z,y)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (z,y)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) only the following components of the projection data will be used: (z,y)
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
- Date
- February 2018
- Authors
- Clemens Lange, Wouter Verkerke (C++ version)
Definition in file rf316_llratioplot.py.