Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf303_conditional.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Multidimensional models: use of tailored pdf as conditional pdfs.s

pdf = gauss(x,f(y),sx | y ) with f(y) = a0 + a1*y

#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooGaussian.h"
#include "RooPolyVar.h"
#include "RooProdPdf.h"
#include "RooPlot.h"
#include "TRandom.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TH1.h"
using namespace RooFit;
{
// S e t u p c o m p o s e d m o d e l g a u s s ( x , m ( y ) , s )
// -----------------------------------------------------------------------
// Create observables
RooRealVar x("x", "x", -10, 10);
RooRealVar y("y", "y", -10, 10);
// Create function f(y) = a0 + a1*y
RooRealVar a0("a0", "a0", -0.5, -5, 5);
RooRealVar a1("a1", "a1", -0.5, -1, 1);
RooPolyVar fy("fy", "fy", y, RooArgSet(a0, a1));
// Create gauss(x,f(y),s)
RooRealVar sigma("sigma", "width of gaussian", 0.5, 0.1, 2.0);
RooGaussian model("model", "Gaussian with shifting mean", x, fy, sigma);
// Obtain fake external experimental dataset with values for x and y
// G e n e r a t e d a t a f r o m c o n d i t i o n a l p . d . f m o d e l ( x | y )
// ---------------------------------------------------------------------------------------------
// Make subset of experimental data with only y values
std::unique_ptr<RooAbsData> expAbsDataY{expDataXY->reduce(y)};
RooDataSet *expDataY = static_cast<RooDataSet*>(expAbsDataY.get());
// Generate 10000 events in x obtained from _conditional_ model(x|y) with y values taken from experimental data
std::unique_ptr<RooDataSet> data{model.generate(x, ProtoData(*expDataY))};
data->Print();
// F i t c o n d i t i o n a l p . d . f m o d e l ( x | y ) t o d a t a
// ---------------------------------------------------------------------------------------------
// P r o j e c t c o n d i t i o n a l p . d . f o n x a n d y d i m e n s i o n s
// ---------------------------------------------------------------------------------------------
// Plot x distribution of data and projection of model on x = 1/Ndata sum(data(y_i)) model(x;y_i)
RooPlot *xframe = x.frame();
expDataXY->plotOn(xframe);
model.plotOn(xframe, ProjWData(*expDataY));
// Speed up (and approximate) projection by using binned clone of data for projection
std::unique_ptr<RooDataHist> binnedDataY{expDataY->binnedClone()};
// Show effect of projection with too coarse binning
((RooRealVar *)expDataY->get()->find("y"))->setBins(5);
std::unique_ptr<RooDataHist> binnedDataY2{expDataY->binnedClone()};
// Make canvas and draw RooPlots
new TCanvas("rf303_conditional", "rf303_conditional", 600, 460);
gPad->SetLeftMargin(0.15);
xframe->GetYaxis()->SetTitleOffset(1.2);
xframe->Draw();
}
{
RooRealVar x("x", "x", -10, 10);
RooRealVar y("y", "y", -10, 10);
RooDataSet *d = new RooDataSet("d", "d", RooArgSet(x, y));
for (int i = 0; i < 10000; i++) {
double tmpy = trnd.Gaus(0, 10);
double tmpx = trnd.Gaus(0.5 * tmpy, 1);
if (fabs(tmpy) < 10 && fabs(tmpx) < 10) {
x.setVal(tmpx);
y.setVal(tmpy);
d->add(coord);
}
}
return d;
}
#define d(i)
Definition RSha256.hxx:102
@ kRed
Definition Rtypes.h:66
@ kCyan
Definition Rtypes.h:66
@ kDotted
Definition TAttLine.h:52
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
#define gPad
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Container class to hold unbinned data.
Definition RooDataSet.h:34
Plain Gaussian p.d.f.
Definition RooGaussian.h:24
Plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:43
A RooAbsReal implementing a polynomial in terms of a list of RooAbsReal coefficients.
Definition RooPolyVar.h:25
Variable that can be changed from the outside.
Definition RooRealVar.h:37
The Canvas class.
Definition TCanvas.h:23
Random number generator class based on M.
Definition TRandom3.h:27
RooCmdArg PrintLevel(Int_t code)
RooCmdArg ConditionalObservables(Args_t &&... argsOrArgSet)
Create a RooCmdArg to declare conditional observables.
RooCmdArg ProjWData(const RooAbsData &projData, bool binData=false)
RooCmdArg LineColor(TColorNumber color)
RooCmdArg LineStyle(Style_t style)
const Double_t sigma
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition CodegenImpl.h:64
RooDataSet::modelData[x,y] = 6850 entries
[#1] INFO:Fitting -- RooAbsPdf::fitTo(model_over_model_Int[x]) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx512
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_model_over_model_Int[x]_d) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y)
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) plot on x averages using data variables (y)
Date
July 2008
Author
Wouter Verkerke

Definition in file rf303_conditional.C.