19x = ROOT.RooRealVar(
"x",
"x", 0, 10)
23mean = ROOT.RooRealVar(
"mean",
"mean of gaussians", 5)
24sigma1 = ROOT.RooRealVar(
"sigma1",
"width of gaussians", 0.5)
25sigma2 = ROOT.RooRealVar(
"sigma2",
"width of gaussians", 1)
27sig1 = ROOT.RooGaussian(
"sig1",
"Signal component 1", x, mean, sigma1)
28sig2 = ROOT.RooGaussian(
"sig2",
"Signal component 2", x, mean, sigma2)
31a0 = ROOT.RooRealVar(
"a0",
"a0", 0.5, 0.0, 1.0)
32a1 = ROOT.RooRealVar(
"a1",
"a1", -0.2, 0.0, 1.0)
33bkg = ROOT.RooChebychev(
"bkg",
"Background", x, [a0, a1])
36sig1frac = ROOT.RooRealVar(
"sig1frac",
"fraction of component 1 in signal", 0.8, 0.0, 1.0)
37sig = ROOT.RooAddPdf(
"sig",
"Signal", [sig1, sig2], [sig1frac])
44nsig = ROOT.RooRealVar(
"nsig",
"number of signal events", 500, 0.0, 10000)
45nbkg = ROOT.RooRealVar(
"nbkg",
"number of background events", 500, 0, 10000)
46model = ROOT.RooAddPdf(
"model",
"(g1+g2)+a", [bkg, sig], [nbkg, nsig])
53data = model.generate({x})
56model.fitTo(data, PrintLevel=-1)
60xframe = x.frame(Title=
"extended ML fit example")
62model.plotOn(xframe, Normalization=dict(scaleFactor=1.0, scaleType=ROOT.RooAbsReal.RelativeExpected))
69 Normalization=dict(scaleFactor=1.0, scaleType=ROOT.RooAbsReal.RelativeExpected),
73ras_bkg_sig2 = {bkg, sig2}
76 Components=ras_bkg_sig2,
78 Normalization=dict(scaleFactor=1.0, scaleType=ROOT.RooAbsReal.RelativeExpected),
89esig = ROOT.RooExtendPdf(
"esig",
"extended signal pdf", sig, nsig)
90ebkg = ROOT.RooExtendPdf(
"ebkg",
"extended background pdf", bkg, nbkg)
96model2 = ROOT.RooAddPdf(
"model2",
"(g1+g2)+a", [ebkg, esig])
99c = ROOT.TCanvas(
"rf202_extendedmlfit",
"rf202_extendedmlfit", 600, 600)
100ROOT.gPad.SetLeftMargin(0.15)
101xframe.GetYaxis().SetTitleOffset(1.4)
104c.SaveAs(
"rf202_extendedmlfit.png")