Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
principal.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Principal Components Analysis (PCA) example

Example of using TPrincipal as a stand alone class.

We create n-dimensional data points, where c = trunc(n / 5) + 1 are correlated with the rest n - c randomly distributed variables.

*************************************************
* Principal Component Analysis *
* *
* Number of variables: 10 *
* Number of data points: 10000 *
* Number of dependent variables: 3 *
* *
*************************************************
Variable # | Mean Value | Sigma | Eigenvalue
-------------+------------+------------+------------
0 | 5.008 | 1.005 | 0.3851
1 | 7.998 | 2.861 | 0.1107
2 | 1.967 | 1.956 | 0.1036
3 | 5.016 | 1.005 | 0.1015
4 | 8.009 | 2.839 | 0.1008
5 | 2.013 | 1.973 | 0.09962
6 | 4.992 | 1.014 | 0.09864
7 | 35 | 5.156 | 6.481e-16
8 | 30.01 | 5.049 | 2.202e-16
9 | 28 | 4.649 | 5.497e-16
Writing on file "pca.C" ... done
#include "TPrincipal.h"
void principal(Int_t n=10, Int_t m=10000)
{
Int_t c = n / 5 + 1;
cout << "*************************************************" << endl;
cout << "* Principal Component Analysis *" << endl;
cout << "* *" << endl;
cout << "* Number of variables: " << setw(4) << n
<< " *" << endl;
cout << "* Number of data points: " << setw(8) << m
<< " *" << endl;
cout << "* Number of dependent variables: " << setw(4) << c
<< " *" << endl;
cout << "* *" << endl;
cout << "*************************************************" << endl;
// Initilase the TPrincipal object. Use the empty string for the
// final argument, if you don't wan't the covariance
// matrix. Normalising the covariance matrix is a good idea if your
// variables have different orders of magnitude.
principal = new TPrincipal(n,"ND");
// Use a pseudo-random number generator
// Make the m data-points
// Make a variable to hold our data
// Allocate memory for the data point
for (Int_t i = 0; i < m; i++) {
// First we create the un-correlated, random variables, according
// to one of three distributions
for (Int_t j = 0; j < n - c; j++) {
if (j % 3 == 0) data[j] = randomNum->Gaus(5,1);
else if (j % 3 == 1) data[j] = randomNum->Poisson(8);
else data[j] = randomNum->Exp(2);
}
// Then we create the correlated variables
for (Int_t j = 0 ; j < c; j++) {
data[n - c + j] = 0;
for (Int_t k = 0; k < n - c - j; k++) data[n - c + j] += data[k];
}
// Finally we're ready to add this datapoint to the PCA
principal->AddRow(data);
}
// We delete the data after use, since TPrincipal got it by now.
delete [] data;
// Do the actual analysis
principal->MakePrincipals();
// Print out the result on
principal->Print();
// Test the PCA
principal->Test();
// Make some histograms of the original, principal, residue, etc data
principal->MakeHistograms();
// Make two functions to map between feature and pattern space
principal->MakeCode();
// Start a browser, so that we may browse the histograms generated
// above
principal);
}
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
int Int_t
Definition RtypesCore.h:45
double Double_t
Definition RtypesCore.h:59
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Principal Components Analysis (PCA)
Definition TPrincipal.h:21
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
const Int_t n
Definition legend1.C:16
TMarker m
Definition textangle.C:8
Authors
Rene Brun, Christian Holm Christensen

Definition in file principal.C.