Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ROOT::ROOT_MATH_ARCH::VectorUtil Namespace Reference

Global Helper functions for generic Vector classes. More...

Functions

template<class Vector1 , class Vector2 >
double Angle (const Vector1 &v1, const Vector2 &v2)
 Find Angle between two vectors.
 
template<class LVector , class BoostVector >
LVector boost (const LVector &v, const BoostVector &b)
 Boost a generic Lorentz Vector class using a generic 3D Vector class describing the boost The only requirement on the vector is that implements the X(), Y(), Z(), T() and SetXYZT methods.
 
template<class LVector , class T >
LVector boostX (const LVector &v, T beta)
 Boost a generic Lorentz Vector class along the X direction with a factor beta The only requirement on the vector is that implements the X(), Y(), Z(), T() and SetXYZT methods.
 
template<class LVector >
LVector boostY (const LVector &v, double beta)
 Boost a generic Lorentz Vector class along the Y direction with a factor beta The only requirement on the vector is that implements the X(), Y(), Z(), T() methods and be constructed from x,y,z,t values The beta of the boost must be <= 1 or a nul Lorentz Vector will be returned.
 
template<class LVector >
LVector boostZ (const LVector &v, double beta)
 Boost a generic Lorentz Vector class along the Z direction with a factor beta The only requirement on the vector is that implements the X(), Y(), Z(), T() methods and be constructed from x,y,z,t values The beta of the boost must be <= 1 or a nul Lorentz Vector will be returned.
 
template<class Vector1 , class Vector2 >
double CosTheta (const Vector1 &v1, const Vector2 &v2)
 Find CosTheta Angle between two generic 3D vectors pre-requisite: vectors implement the X(), Y() and Z()
 
template<class Vector1 , class Vector2 >
Vector1::Scalar DeltaPhi (const Vector1 &v1, const Vector2 &v2)
 Find aximutal Angle difference between two generic vectors ( v2.Phi() - v1.Phi() ) The only requirements on the Vector classes is that they implement the Phi() method.
 
template<class Vector1 , class Vector2 >
Vector1::Scalar DeltaR (const Vector1 &v1, const Vector2 &v2)
 Find difference in pseudorapidity (Eta) and Phi between two generic vectors The only requirements on the Vector classes is that they implement the Phi() and Eta() method.
 
template<class Vector1 , class Vector2 >
Vector1::Scalar DeltaR2 (const Vector1 &v1, const Vector2 &v2)
 Find square of the difference in pseudorapidity (Eta) and Phi between two generic vectors The only requirements on the Vector classes is that they implement the Phi() and Eta() method.
 
template<class Vector1 , class Vector2 >
Vector1::Scalar DeltaR2RapidityPhi (const Vector1 &v1, const Vector2 &v2)
 Find square of the difference in true rapidity (y) and Phi between two generic vectors The only requirements on the Vector classes is that they implement the Phi() and Rapidity() method.
 
template<class Vector1 , class Vector2 >
Vector1::Scalar DeltaRapidityPhi (const Vector1 &v1, const Vector2 &v2)
 Find difference in Rapidity (y) and Phi between two generic vectors The only requirements on the Vector classes is that they implement the Phi() and Rapidity() method.
 
template<class Vector1 , class Vector2 >
Vector1::Scalar InvariantMass (const Vector1 &v1, const Vector2 &v2)
 return the invariant mass of two LorentzVector The only requirement on the LorentzVector is that they need to implement the X() , Y(), Z() and E() methods.
 
template<class Vector1 , class Vector2 >
Vector1::Scalar InvariantMass2 (const Vector1 &v1, const Vector2 &v2)
 Returns the square of what InvariantMass(const Vector1&, const Vector2&) would return.
 
template<class Matrix , class CoordSystem , class U >
DisplacementVector3D< CoordSystem, U > Mult (const Matrix &m, const DisplacementVector3D< CoordSystem, U > &v)
 Multiplications of a generic matrices with a DisplacementVector3D of any coordinate system.
 
template<class CoordSystem , class Matrix >
LorentzVector< CoordSystem > Mult (const Matrix &m, const LorentzVector< CoordSystem > &v)
 Multiplications of a generic matrices with a LorentzVector described in any coordinate system.
 
template<class Matrix , class CoordSystem , class U >
PositionVector3D< CoordSystem, U > Mult (const Matrix &m, const PositionVector3D< CoordSystem, U > &p)
 Multiplications of a generic matrices with a generic PositionVector Assume that the matrix implements the operator( i,j) and that it has at least 3 columns and 3 rows.
 
template<class Vector1 , class Vector2 >
double Perp (const Vector1 &v, const Vector2 &u)
 Find the magnitude of the vector component of v perpendicular to the given direction of u.
 
template<class Vector1 , class Vector2 >
double Perp2 (const Vector1 &v, const Vector2 &u)
 Find the magnitude square of the vector component of v perpendicular to the given direction of u.
 
template<class Vector1 , class Vector2 >
Vector1 PerpVector (const Vector1 &v, const Vector2 &u)
 Find the vector component of v perpendicular to the given direction of u.
 
double Phi_0_2pi (double phi)
 Return a phi angle in the interval (0,2*PI].
 
double Phi_mpi_pi (double phi)
 Returns phi angle in the interval (-PI,PI].
 
template<class Vector1 , class Vector2 >
Vector1 ProjVector (const Vector1 &v, const Vector2 &u)
 Find the projection of v along the given direction u.
 
template<class Vector , class RotationMatrix >
Vector Rotate (const Vector &v, const RotationMatrix &rot)
 rotation on a generic vector using a generic rotation class.
 
template<class Vector >
Vector Rotate (const Vector &v, double alpha, const Vector &axis)
 rotation along a custom axis for a generic vector by an Angle alpha (in rad) returning a new vector.
 
template<class Vector >
Vector RotateX (const Vector &v, double alpha)
 rotation along X axis for a generic vector by an Angle alpha returning a new vector.
 
template<class Vector >
Vector RotateY (const Vector &v, double alpha)
 rotation along Y axis for a generic vector by an Angle alpha returning a new vector.
 
template<class Vector >
Vector RotateZ (const Vector &v, double alpha)
 rotation along Z axis for a generic vector by an Angle alpha returning a new vector.
 

Detailed Description

Global Helper functions for generic Vector classes.

Any Vector classes implementing some defined member functions, like Phi() or Eta() or mag() can use these functions. The functions returning a scalar value, returns always double precision number even if the vector are based on another precision type

See also
Physics Vectors