import ROOT
tree_name = "test_tree"
chunk_size = 50
batch_size = 5
block_size = 10
filteredrdf = (
rdataframe.Filter(
"f1 > 30",
"first_filter").Filter(
"f2 < 70",
"second_filter").Filter(
"f3==true",
"third_filter")
)
max_vec_sizes = {"f4": 3, "f5": 2, "f6": 1}
filteredrdf,
batch_size,
chunk_size,
block_size,
validation_split=0.3,
max_vec_sizes=max_vec_sizes,
shuffle=False,
)
print(f"Columns: {ds_train.columns}")
print(f"Training batch {i} => {b.shape}")
print(f"Validation batch {i} => {b.shape}")
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
Columns: ['f1', 'f2', 'f3', 'f4_0', 'f4_1', 'f4_2', 'f5_0', 'f5_1', 'f6_0']
Training batch 0 => (5, 9)
Training batch 1 => (5, 9)
Validation batch 0 => (5, 9)
- Author
- Dante Niewenhuis
Definition in file ml_dataloader_filters_vectors.py.